
•

IMSttM

D
fmrai

'ms*

LI

Subroutines
Reference Guide
Volume II

OOC10081-1LA

Subroutines
Reference Guide

Volume II
First Edition

by

Len Bruns

Updated for Rev 21.0

by

Glenn Morrow, Kim Seward,
and

Debra Spencer

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 21.0 (Rev. 21.0).

Prime Computer, Inc.
Prime Park

Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1987 by Prime Computer, Inc. All rights reserved.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc. The
Prime logo, DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS, PERFORM,
Prime INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY, PRIMIX,
PRISAM, PST 100, PT25, PT45, PT65, PT200, PW150, PW200, RINGNET,
SIMPLE, 50 Series, 400, 750, 850, 2250, 2350, 2450, 2550, 2650, 2655,
9650, 9655, 9750, 9755, 9950, and 9955 are trademarks of Prime
Computer, Inc.

PRINTING HISTORY

First Edition (PDR3621) March 1979 for Revision 16.3
Second Edition (PDR3621) January 1980 for Revision 17.2
Update 1 (PTU2600-078) December 1980 for Revision 18.1
Third Edition (DOC3621-190) July 1982 for Revision 19.0
First Edition
Volume I (DOC10080-1LA) August 1986 for Revision 20.2
Volume II (DOC10081-1LA) August 1986 for Revision 20.2
Volume III (DOC10082-1LA) August 1986 for Revision 20.2
Volume IV (DOC10083-1LA) August 1986 for Revision 20.2

Update 1
Volume II (UPD10081-11A) July 1987 for Revision 21.0
Volume III (UPD10082-11A) July 1987 for Revision 21.0
Volume IV (UPD10083-11A) July 1987 for Revision 21.0

Second Edition
Volume I (DOC10080-2LA) July 1987 for Revision 21.0

CREDITS

Project Support: David Brooks, Camilla Haase, Joan Karp, Alice Landy,
Margaret Taft

Editorial: Thelma Henner, Michael McNulty, Mary Skousgaard
Illustration: Marjorie Clark, Mingling Chang, Susan Windheim
Document Preparation: Julie Cyphers, Celeste Henry, Kathy Normington
Production: Judy Gordon

s*\

ii

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Customers International

Call Prime Telemarketing,
toll free, at 1-800-343-2533,
Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

Contact your local Prime
subsidiary or distributor.

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts)
1-800-343-2320 (within other states)

1-800-541-8888 (within Alaska)
1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

m

r
Contents

ABOUT THIS BOOK Vll

1 OVERVIEW OF SUBROUTINES

Functions and Subroutines 1-1
Subroutine Descriptions 1-2
Subroutine Usage 1-2
Subroutine Declarations 1-4
Subroutine Calls 1-4
Function Declarations 1-5
Function Calls 1-5
Functions Without Parameters 1-5

Subroutine Parameters 1-6
Parameter and Returned-Value
Data Types 1-7

Optional Parameters 1-9
Optional Returned Values 1-10
How to Set Bits in Arguments 1-11
Key Names as Arguments 1-12
Standard Error Codes 1-13
Libraries and Addressing Modes 1-14

Loading and Linking Information 1-14
Satisfying the References at
Load Time 1-14

Getting the Subroutines at
Run Time 1-15

2 ACCESS CONTROL 2-1

3 ATTACHING 3-1

4 FILE AND DIRECTORY MANIPULATION 4-1

5 EPF MANAGEMENT 5-1

6 COMMAND ENVIRONMENT 6-1

7 SEARCH RULE SUBROUTINES 7-1

APPENDIXES

A OBSOLETE FILE SYSTEM SUBROUTINES A-l

B DATA TYPE EQUIVALENTS B-l

C ARGUMENT PARSING BY THE
CL$PIX SUBROUTINE

Overview C-l
CL$PIX Operating Modes C-l
The Picture in Normal Mode C-2
The Picture in CPL Mode C-10
Example for CL$PIX C-ll
Calls Made by CL$PIX C-13

INDEX OF SUBROUTINES SX-1

INDEX X-l

/*%

VI

About
This Book

The Subroutines Reference Guide is organized to give a systematic
description of subroutine libraries — sets of routines, all broadly
dealing with the same subject, grouped together in one binary file.
The subroutines in these libraries free the programmer from the need to
rewrite the typically repeated piece of code. The programmer can, of
course, make personalized subroutines as well, but will find an
abundance of them already on call.

OVERVIEW OF THIS SERIES

The Subroutines Reference Guide consists of a series of four volumes
A brief summary of the contents of each volume is given below.

Volume I

Volume I is an introduction to the entire Subroutines Reference Guide.
It describes the nature and functions of Prime's standard subroutines
and subroutine libraries. It explains how subroutines can be called
from programs written in Prime's programming languages: C, COBOL 74,
FORTRAN IV, FORTRAN 77, Pascal, PL/I, BASIC V/M, and PMA.

v n

Volume II

Volume II describes several functional groups of subroutines, dealing
with the access to and management of file system entities, the
manipulation of EPFs in the execution environment, system search rules,
and the use of a number of command environment functions. Three
chapters are devoted to subroutines related to the file system, one
chapter describes system search rules, and one chapter each is devoted
to those subroutines related to EPF management and to the command
environment.

Volume III

Volume III describes system subroutines. The subroutines covered in
this volume are the general system calls to the operating system and
standard system library. This excludes file and EPF manipulation,
which are described in Volume II. Volume III also includes System
Information and Metering (SIM) routines.

Volume IV

Volume IV presents several mature libraries: the Input/Output Control
System (IOCS) libraries and other I/O-related subroutines, the
Application libraries, the SORT libraries, and MATHLB.

IOCS provides device-independent I/O. The chapters on IOCS provide
descriptions of the device-independent subroutines plus those
device-dependent subroutines simplified by IOCS. Another section
provides descriptions of the synchronous and asynchronous device-driver
subroutines.

Sections on the Application Library, the Sort Libraries, and the
FORTRAN Matrix library provide descriptions of other program
development subroutines especially useful for FORTRAN programs.

SPECIFICS OF THIS VOLUME

This volume of the Subroutines Reference Guide series presents detailed
descriptions of system search rule subroutines and subroutines used in
manipulating file system entities; subroutines related to EPF
manipulation and the command environment are also described.

The file system subroutines (Chapters 2, 3, and 4) are divided into
three groups: subroutines used in controlling access to objects, in
attaching to file directories, and in operating on (creating, using,
and deleting) the objects themselves.

v m

Another subroutine group (Chapter 5) deals with the operations
necessary to the initialization, execution, and maintenance of
executable program format (EPF) files, and the management of dynamic
storage space required for their execution.

A group of subroutines (Chapter 6) is described that enables user
programs to take advantage of some of the functions built into the
command environment: determining the command environment breadth and
depth, setting and retrieving local and global variables, parsing
command lines, and related operations. Some of these subroutines are
particularly useful when used in routines that are called by CPL
programs.

Finally, Chapter 7 describes system search rule subroutines that enable
users to read and modify the sequential search lists that PRIMOS uses
to locate file system objects.

SUGGESTED REFERENCES

The Prime User7 s Guide (DOC4130-4LA) contains information on system
use, directory structure, the condition mechanism, CPL files, ACLs,
global variables, and how to load and execute files with external
subroutines.

The Programmer's Guide to BIND and EPFs (DOC8691-1LA) shows application
programmers how to use the executable program format environment.

The Advanced Programmer's Guide, the companion to the Subroutines
Reference Guide series, consists of four volumes:

Advanced Programmer's Guide, Volume 0: Introduction and Error Codes
(DOC100 66-1LA)

Advanced Programmer's Guide, Volume I: BIND and EPFs
(DOC10055-1LA)

Advanced Programmer's Guide, Volume II: File System
(DOC10056-2LA)

Advanced Programmer's Guide, Volume III: Command Environment
(DOC10057-1LA)

These volumes provide strategies for the use of subroutines by system
programmers and application programmers. In addition to explanations
for each error code message, the manual provides the most complete
information on the use of EPFs, of file system subroutines, and of
command environments.

IX

The following related Prime publications are also available:

Operator's Guide to System Commands (DOC9304-3LA)

System Administrator''s Guide, Volume I: System Configuration
(DOC10131-1LA)

System Administrator's Guide, Volume II: Communication Lines and
Controllers (DOC10132-1LA)

System Administrator's Guide, Volume III: System Access and
Security (DOC10133-1LA)

System Architecture Reference Guide (DOC9473-2LA)

PRIME DOCUMENTATION CONVENTIONS

Subroutine descriptions use the conventions shown below,
illustrate use of these conventions.

Examples

Convention

UPPERCASE

lowercase

Parentheses
()

Explanation

In subroutine descriptions,
words in uppercase indicate
actual names of commands,
options, statements, data
types, and keywords.

In subroutine descriptions,
words in lowercase indicate
variables for which you must
substitute a suitable value.

In call statements,
parentheses must be
entered exactly as shown.

Example

FIXED BIN

key, filename

CALL TIMDAT(array, n)

Changes made to these pages since the last printing are identified by
vertical bars in the margins. Each new routine in this package is
marked with a bar beside the routine name, at the descriptions's
heading.

/^\

1
Overview of Subroutines

A subroutine is a module of code that can be called from another
module. It is useful for performing operations that cannot be
performed by the calling language, or for performing standard
operations faster. Users can write their own subroutines to supply
customized or repetitive operations. However, this guide discusses
only standard subroutines provided with the PRIMOS® operating system
or in standard libraries.

This chapter summarizes the calling conventions for Prime subroutines
and explains the format of the subroutine descriptions in this volume.
It assumes that readers know a high-level language or PMA (Prime Macro
Assembler), and that they are familiar with the concept of external
subroutines. For more information on calling subroutines from Prime
languages, see the chapter on your particular language in Volume I.

FUNCTIONS AND SUBROUTINES

In this guide, a function is a call that returns a value. You call a
function by using it in an expression; the function's returned value
can then be assigned to a variable or used in other operations within
the expression. Here, the value returned by TNCHK$ is assigned to the
variable VALUE1:

f®* VALUE1 = TNCHK$(argl, arg2);

1-1 First Edition

SUBROUTINES, VOLUME II

A subroutine returns values only through its arguments. It is called
this way:

CALL AC$SET(argl, arg2, arg3, arg4);

However, the word subroutine is also used as the collective term for
both of these modules.

SUBROUTINE DESCRIPTIONS

In this guide, each description of a subroutine contains the following
sections (see Figure 1-1):

• Purpose. A brief description of what the subroutine does.

• Usage. The format of a subroutine declaration and a subroutine
call, using PL/I language elements. For further information,
see the section SUBROUTINE USAGE below.

• Parameters. Information about the arguments the subroutine
expects and the values it returns. For further information, see
the section SUBROUTINE PARAMETERS later in this chapter.

• Discussion. Additional information about the subroutine and
examples of its use.

• Loading and Linking Information. Information about what
libraries must be loaded during the loading and linking process.
For more information, see Satisfying the References at Load Time
later in this chapter.

SUBROUTINE USAGE

The Usage section of each subroutine description includes two items of
information:

• How to declare the subroutine in a program.

• How to invoke it in a program.

The notation used is that of the PL/I language. If you do not know
PL/I, the explanation of the relevant PL/I syntax and data types in
this section and the SUBROUTINE PARAMETERS section should enable you to
call these subroutines from other languages.

Not all languages require that a subroutine be declared, but the Usage
section should always be referred to for information on data types.

First Edition 1-2

s*\

OVERVIEW OF SUBROUTINES

Function Declarations

The following example shows a function declaration:

DCL ISACL$ ENTRY (FIXED BIN, FIXED BIN) RETURNS (BIT(l));

The only difference between a function declaration and a subroutine
declaration is at the end of the DECLARE statement. The function
declaration contains the keyword RETURNS, followed by a returns
descriptor specifying the data type of the value returned by the
function. In this case, it is a logical or Boolean value — one that
equates to TRUE or FALSE.

Function Calls

A function is invoked when its name is used as an expression on the
right-hand side of an assignment statement. The following example
shows an invocation of the function declared above:

is_acl_dir = ISACL$ (unit, code);

The equal sign (=) is the assignment operator. is_acl_dir is a logical
(Boolean) variable that is assigned the value returned by the call to
ISACL$. unit and code represent integer values.

Functions Without Parameters

A function that takes no parameters is invoked with an empty argument
list. The DATE$ subroutine is declared as follows:

DCL DATE$ ENTRY RETURNS(FIXED BIN(31));

Its invocation looks like this:

date_word = DATE$();

Note

Functions that take no arguments cannot be called from FTN
programs; they can, however, be called from F77 programs.

1-5 First Edition

SUBROUTINES, VOLUME II

SUBROUTINE PARAMETERS

Subroutines usually expect one or more arguments from the calling
program. These arguments must be of the data type specified in the
DECLARE statement. Volume I discusses how to translate the data types
indicated by the PL/I declarations into other Prime languages. A chart
summarizing data type equivalents for all Prime languages is in
Appendix B of this volume.

You must provide the number of arguments expected by the subroutine, in
the order in which they are expected. If too few arguments are passed,
execution causes an error message such as POINTER FAULT or ILLEGAL
SEGNO. If too many arguments are passed, the subroutine ignores the
extra arguments, but will probably perform correctly. A small number
of subroutines, such as IOA$, accept varying numbers of arguments.

The Usage section of a subroutine description gives the data types of
the parameters. The Parameters section explains what information these
parameters contain and what they are used for. Each parameter
description in this section begins with a word in uppercase that
indicates whether the parameter is used for input or output:

• INPUT means that the parameter is used only for input, and that
its value is not changed by the subroutine.

• OPTIONAL INPUT refers to an input parameter that may be omitted.
See the section Optional Parameters later in this chapter.

• OUTPUT means that the parameter is used only for output. You do
not have to initialize it before you call the subroutine.

• OPTIONAL OUTPUT refers to an output parameter that may be
omitted. See the section Optional Parameters later in this
chapter.

• INPUT/OUTPUT means that the parameter is used for both input and
output. The argument you pass to it may be changed by the
subroutine.

• INPUT -> OUTPUT refers to a situation in which

- The parameter, an input parameter, is a pointer.

- The data item to which the pointer points is not a
parameter of the subroutine, but it is changed by the
subroutine.

• RETURNED VALUE is the value returned by a function. (It is not,
strictly speaking, a parameter.)

• OPTIONAL RETURNED VALUE is the value returned by a subroutine
that can be called either as a function or as a procedure. See
the section Optional Returned Values later in this chapter.

First Edition 1-6

/^\

OVERVIEW OF SUBROUTINES

Parameter and Returned-Value Data Types

A PL/I parameter specification consists simply of a list of the data
types of the parameters. The data types you will encounter, both in
the parameter list and in the RETURNS part of a function declaration,
are the following:

CHAR(n)

CHAR(*)

CHAR(n) VAR

CHAR(*) VAR

FIXED BIN

FIXED BIN(31)

(n) FIXED BIN

FLOAT BIN

FLOAT BIN(47)

BIT(l)

BIT(n)

Also specified as CHARACTER(n), CHARACTER(n)
NONVARYING. Specifies a character string or array
of length n. A CHAR(n) string is stored as a
byte-aligned string, one character per byte. (A
byte is 8 bits.)

Also CHARACTER(*), CHARACTER(*) NONVARYING.
Specifies a character string or array whose, length
is unknown at the time of declaration. A CHAR(*)
string is stored as a byte-aligned string, one
character per byte.

Also CHARACTER(n) VARYING. Specifies a character
string or array whose length can be a maximum of n
characters. The first 2 bytes (one halfword) of
storage for a CHAR(n) VAR string contain an integer
that specifies the string length; these are
followed by the string, one character per byte.

Also CHARACTER(*) VARYING. Specifies a character
string or array whose length is unknown at the time
of declaration. The first 2 bytes (one halfword)
of storage for a CHAR(*) VAR string contain an
integer that specifies the string length; these
are followed by the string, one character per byte.

Also FIXED BINARY, BIN, FIXED BIN(15).
16-bit (halfword) signed integer.

Specifies a 32-bit signed integer.

Specifies a

An integer array of n elements. See below for more
information about arrays.

Also FLOAT BIN(23), FLOAT. Specifies a 32-bit
(one-word) floating-point number.

Specifies a 64-bit (double-word) floating-point
number.

Specifies a logical (Boolean) value. A bit
of 1 means TRUE; a value of 0 means FALSE.

value

Specifies a bit string of length n.
means that the bit string is to be
halfword boundary.

BIT(n) ALIGNED
aligned on a

1-7 First Edition

SUBROUTINES, VOLUME II

POINTER Also PTR. Specifies a POINTER data type. A
pointer is usually stored in three halfwords (48
bits) . If the pointer will point only to
halfword-aligned data, it may occupy two halfwords
(32 bits) . The item to which the pointer points is
declared with the BASED attribute (for instance,
BASED FIXED BIN).

POINTER OPTIONS (SHORT)
Same as POINTER except that it always occupies only
two halfwords and can only point to
halfword-aligned data.

Note

When used as a parameter, POINTER can
generally be used interchangeably with
POINTER OPTIONS (SHORT).

When used as a returned function value,
POINTER OPTIONS (SHORT) can be used in any
high-level language except Pascal or 64V
mode C, which require returned pointers to
be three halfwords; in these cases,
POINTER must be used. C in 32IX mode
accepts only halfword-aligned, two-halfword
pointers, and therefore requires the use of /!*^
POINTER OPTIONS (SHORT).

Sometimes an argument is defined as an array or a structure. An array
declaration looks like this:

DCL ITEMS(10) FIXED BIN;

Here, ITEMS is a ten-element array of integers. The keywords FIXED
BIN, however, can be replaced by any data type. In PL/I, by default,
arrays are indexed starting with the subscript 1; the first integer in
this array is ITEMS(1).

An array with a starting subscript other than 1 is declared with a
range specification:

DCL WORD(0:1023) BASED FIXED BIN;

WORD is an array indexed from 0 to 1023, and its elements are
referenced by POINTER variables.

First Edition 1-8

OVERVIEW OF SUBROUTINES

A structure is equivalent to a record in COBOL or Pascal. A structure
declaration looks like this:

DCL 1 FS_DATE,
2 YEAR BIT(7),
2 MONTH BIT(4),
2 DAY BIT(5),
2 QUADSECONDS FIXED BIN(15);

The numbers 1 and 2 indicate the relative level numbers of the items in
the structure. The name of the structure itself is always declared at
level 1. The level number is followed by the name of the data item and
its data type. In this example, the structure occupies a total of 32
bits. (Remember that a FIXED BIN(15) value occupies 16 bits of
storage.)

Since no names are given to data items in parameter lists, the array
declared above as ITEMS would be declared simply as (10) FIXED BIN.
Similarly, the structure FS_DATE would be listed as

(..., 1, 2 BIT(7), 2 BIT(4), 2 BIT(5), 2 FIXED BIN(15), ...)

Optional Parameters

On Prime computers, some subroutines and functions are designed so that
one or more of their parameters, input or output, can be omitted.
Candidates for omission are always the last n parameters. Thus, if a
subroutine has a full complement of three parameters, it may be
designed so that the last one or the last two can be omitted; the
subroutine cannot be designed so that only the second parameter can be
omitted. The first parameter can never be omitted.

In the Usage section of a subroutine description, any optional
parameters are enclosed in square brackets, as in the following
declaration and CALL statement:

DCL CNAM$$ ENTRY (CHAR(32), FIXED BIN, CHAR(32), FIXED BIN,
FIXED BIN
[, FIXED BIN]);

CALL CNAM$$ (oldnam, oldlen, newnam, newlen, code
[, ok_open]);

In some cases, parameters can be omitted because they are not needed
under the circumstances of the particular call. In other cases, when
the parameter is of type INPUT, the subroutine will detect the missing
parameter and will assume some value for it. For example, C1IN$,

1-9 First Edition

SUBROUTINES, VOLUME II

described in Volume III, can be called with one, two or three
arguments:

CALL C1IN$ (char);
CALL C1IN$ (char, echo_flag);
CALL C1IN$ (char, echo_flag, term_flag);

If echo_flag is missing, the subroutine acts as if it had been supplied
with a value of "true". If term-flag is missing, the subroutine acts
as if it had been supplied with a value of "false".

In still other cases, the subroutine changes its behavior depending on
the presence of the parameter. For example, the subroutine CH$FX1
(described in Volume III) uses its third argument to return an error
code. If the code argument is omitted and an error occurs, the routine
signals a condition instead.

If a parameter can be omitted, it is described as OPTIONAL INPUT or
OPTIONAL OUTPUT in the routine description. Most of the routines in
the Subroutines Reference Guide have no optional parameters.

Optional Returned Values

In the architecture of Prime computers, a subroutine that was designed
as a function can be called as a subroutine using the CALL statement.
Frequently this makes no sense. The statement

CALL SIN (45);

does nothing useful; the value that the SIN function returns is lost.
But, with functions that change some of their parameters as well as
return a value, the returned value can be useful in some contexts and
not of interest in other contexts. Consider the function CL$GET,
described in Volume III. It reads a line from the user terminal and,
in addition, returns a flag that indicates whether a command input file
is active. Most programs do not need to know whether a command input
file is active. They would call CL$GET as a subroutine:

CALL CL$GET (BUFFER, 80, CODE);

A program that was interested in command input files, however, would
call CL$GET as a function:

First Edition 1-10

OVERVIEW OF SUBROUTINES

#^v COMISW = CL$GET (BUFFER, 80, CODE);

Note

In PL/I and Pascal, a given subroutine cannot be used both as a
subroutine and as a function within a single source module.

The Usage section of the subroutine descriptions gives both the
function invocation and the subroutine invocation for subroutines that
are likely to be called in both ways.

In the Parameters section, a routine that is designed as a function has
its returned value described as RETURNED VALUE if it is considered the
main purpose of the subroutine to return the value. If the function is
likely to be called as a subroutine — that is, if returning the value
is considered to be something that is needed only on some occasions —
the returned value is described as OPTIONAL RETURNED VALUE.

How to Set Bits in Arguments

Sometimes a subroutine expects an argument that consists of a number of
bits that must be set on or off.

A data item is stored in a computer as a collection of bits, which can
each have one of two values, off or on. On Prime computers, off is
arbitrarily equated to the bit value 'O'B or false, and on is equated
to 'l'B or true. (This is not the same as the FORTRAN values
.FALSE, and .TRUE., which are the LOGICAL data type and are really
integers.) When bits are stored as part of a group, however, the
position of the bit gives it a numeric value as well as the bit value
'l'B or 'O'B. Its position equates it to a power of 2. Consider an
argument that contains only two bits, represented in Figure 1-2.

Bit 1 Bit 2

2**1 2**0

Values of Bit Positions — Two Bits
Figure 1-2

The low-order bit is in the position of 2 to the 0 power, and its
value, if ON, is 1. The high-order bit is in the position of 2 to the
first power, and its value, if ON, is 2. (If OFF, the value of a bit

1-11 First Edition

SUBROUTINES, VOLUME II

is always 0.) By convention, the low-order bit is called the rightmost
bit and the high-order bit is called the leftmost bit.

In an argument containing 16 bits, choose the bits that you want to set
ON, compute their value by position, and add these values. The
resulting decimal value is what you should assign to the subroutine
argument for the options you want. You can pass an integer as an
argument that is declared as BIT(n) ALIGNED. The subroutine interprets
the integer as a bit string. For example, if you want to set the
sixteenth and the seventh bits, compute 2 to the 0 power plus 2 to the
ninth power, which amounts to 1 plus 512, or 513. Figure 1-3
illustrates values of bit positions in a 16-bit argument.

If an argument is declared as BIT(l) or BIT(l) ALIGNED, the bit passed
is the most significant (leftmost) bit of the memory location referred
to.

Bit1 Bit 7 Bit 16

2**15 2**9 2**0

Values of Bits in a 16-bit Argument
Figure 1-3

Key Names as Arguments

In calls to many subroutines, data names known as keys can be used to
represent numeric arguments. The subroutine description explains which
key to use. Numeric values are associated with these keys in the UFD
named SYSCOM. The keys in SYSCOM are listed in Volume I.

Keys are of the form x$yyyy, where x is either K or A and yyyy is any
combination of letters. Keys that begin with K concern the file
system; those that begin with A concern applications library routines.
Examples are:

K$CURR
A$DEC

For example, in the subroutine call

CALL GPATH$ (K$UNIT other arguments...);

First Edition 1-12

OVERVIEW OF SUBROUTINES

the key K$UNIT stands for a numeric constant value expected by the
subroutine. If a subroutine expects key arguments, the description of
that subroutine explains which keys to use in which circumstances.

Each language has its own files of keys. The chapters on individual
languages in Volume I explain how to insert these files into your
program. Key files have the pathnames

SYSCOM>KEYS.INS.language

for K$yyyy keys, and

SYSCOM>A$KEYS.INS.language

for A$yyyy keys, where language is the suffix for that language.

For more information about keys, see Volume I.

Standard Error Codes

Many subroutines include as an argument a standard error code, which is
similar to a key. The error code corresponds to an error message that
the subroutine can return to indicate that the call to the subroutine
succeeded or failed, or to report some other condition worth noting.

Standard error codes are of the form E$xxxx, where xxxx is any
combination of letters. For example, the error code

E$DVIU

corresponds to the error message The device is in use..

The standard error codes are defined in the UFD named SYSCOM. Like a
key file, the error code file for a particular language must be
inserted in the program that calls the subroutine. Each error code
file has the pathname

SYSCOM>ERRD.INS.language

where language is the suffix for that language. Volume I contains a
listing of the standard error codes and the messages to which they
correspond. For explanations of the standard error codes, see Volume 0
of the Advanced Programmers Guide.

1-13 First Edition

SUBROUTINES, VOLUME II

Libraries and Addressing Modes

The Subroutines Reference Guide is organized to give a systematic
description of subroutine libraries — sets of routines, all broadly
dealing with the same subject, grouped together into one file. There
is a separate library for each of these subjects.

Prime computers offer several addressing modes to provide source level
compatibility among several machine models. To maintain this
compatibility, a given subroutine library normally exists in three
general versions: V-mode, V-mode (Unshared), and R-mode. A discussion
of shared and unshared libraries appears in Volume I. For a
description of addressing modes, see the System Architecture Reference
Guide.

Programs compiled in either V-mode or I-mode can use either V-mode or
I-mode libraries (Prime-supplied V-mode libraries serve both V-mode and
I-mode programs). Programs written in R-mode must use the R-mode
version of the library.

LOADING AND LINKING INFORMATION

Every subroutine description contains a section entitled Loading and
Linking Information, which describes what, if any, action to take to
permit linking to the subroutine from programs in each of the
compilation modes.

In these sections, some subroutines are designated as "not available"
in one or more versions (most often the R-mode version) . If a
subroutine is not available in a given mode, it means that that
subroutine cannot be called from a program written and compiled in that
mode. For example, programs intended to manipulate EPFs using the EPF
subroutines cannot be linked and executed in R-mode, since there are no
R-mode versions of these subroutines. Such programs must be written,
compiled, and linked in V-mode or I-mode.

Satisfying the References at Load Time

When subroutines are called by a program, the references must be
satisfied when the compiled binaries are linked together with BIND,
SEG, or LOAD (the R-mode loader).

This is accomplished by loading a Prime-supplied binary library using
the LI (for Library) command. The Loading and Linking Information
section under each subroutine description provides the information for
up to three loading choices:

-=5v

First Edition 1-14

OVERVIEW OF SUBROUTINES

• V-mode or I-mode, with shared code. This is the preferred
method, as it allows many users of a system to share the same
copy of code.

• V-mode or I-mode with unshared code.

• R-mode.

For most subroutines described in this volume, only the V-mode or
I-mode subroutines with unshared code require a special library. Both
the shared version and the R-mode version (when available) require "no
special action." This means that the LI[brary] command with no
arguments, which normally ends a loading sequence, satisfies the
references.

Getting the Subroutines at Run Time

When a subroutine is available to be shared between users, PRIMOS
postpones finding the code until runtime. (Other subroutines have
their code so linked with the program that they are called "unshared"
routines.) The program linked to shared subroutine code contains only
the name of the subroutine, and at runtime PRIMOS replaces the name
with the actual location of the shared code, thus completing the
connection. For the connection to happen, the code must be in one of
three places: in PRIMOS itself, in an EPF library, or in a static-mode

/#^ library. Furthermore, the user's ENTRY$ search list must contain a
pathname to the library that holds the code, unless the subroutine is
located in PRIMOS.

If the Loading and Linking Information section indicates "no special
action" for loading a subroutine library, then the code for this
subroutine is either in PRIMOS itself or in one of the two
Prime-supplied EPF libraries, SYSTEM_LIBRARY.RUN or PRIMOS_LIBRARY.RUN.
The pathnames to these libraries must be in the system search rules.

Because many of the subroutines described in this guide provide PRIMOS
services, there is no way of providing them as unshared code, since
PRIMOS by definition is shared. Even if you call these subroutines
from programs that are loaded with unshared libraries, what is executed
by these calls is shared code.

For a further description of libraries and related terminology, see
Volume I of the Subroutines Reference Guide.

1-15 First Edition

2
Access Control

Access control refers to the protection that PRIMOS and the user can
specify for a file system object to prevent unauthorized access to it.
Protection is defined by use of a list called an access control list/
or ACL.

This chapter describes a set of system subroutines that can be used to
manipulate the access control lists of file system objects.

Subroutines are provided to set, modify, and delete ACLs on most types
of objects: access categories, user file directories (UFDs), segment
directories, and files. ACLs of master file directories (MFDs) can be
manipulated only by a System Administrator or by a user working at the
terminal designated as the supervisor terminal (User 1).

Several subroutines can be used to obtain access control information,
while others can manipulate the older password-protected directories
and files.

User programs can also use the ACL mechanism to control user access to
resources other than files.

Detailed information on the use of ACLs can be found in the Prime
User's Guide and in the Advanced Programmer's Guide.

2-1 First Edition

SUBROUTINES, VOLUME II

The following subroutines, their declarations, and their calling
sequences are described in this chapter:

AC$CAT Add an object's name to an access category.

AC$CHG Modify an existing ACL on an object.

AC$DFT Set an object's ACL to that of its parent directory.

AC$LIK Set an object's ACL like that of another object.

AC$LST Obtain the contents of an object's ACL.

AC$RVT Convert an object from ACL protection to password protection.

AC$SET Set a specific ACL on an object.

CALAC$ Determine whether an object is accessible for a given action.

CAT$DL Delete an access category.

GETID$ Obtain the user-id and the groups to which it belongs.

GPAS$$ Obtain the passwords of a sub-UFD of the current UFD.

ISACL$ Determine whether an object is ACL-protected.

PA$DEL Remove an object's priority access.

PA$LST Obtain the contents of an object's priority ACL.

PA$SET Set priority access on an object.

SPAS$$ Set the owner and nonowner passwords on an object.

First Edition 2-2

ACCESS CONTROL

AC$CAT

Purpose

Add an object's name to an access category.

Usage

DCL AC$CAT ENTRY (CHAR(128)VAR, CHAR(32)VAR, FIXED BIN);

CALL AC$CAT (name, category_name, code);

Parameters

name

INPUT. Pathname or objectname of the object to be protected.

category_name

INPUT. Name of the category to which object_path is to be added,

code

OUTPUT. Standard error code.

Discussion

An access category provides protection to any number of objects without
using the disk space that would be required to place a specific ACL on
each of the objects. Since an access category uses about the same disk
space as two average ACLs, whenever more than two objects require the
same protection, the user should consider using an access category.

The object named in name must exist and must be a file, a file
directory, or a segment directory. If the object is in the current
directory, name can be a simple objectname.

The access category must exist in the same directory as the object. If
the object is password-protected and its parent is an ACL directory,
the object is converted to ACL protection.

Protect and List access is required on the parent directory if the
object is a file; if it is a directory or an access category, Protect
access is required on the object itself. If the object is a password

2-3 First Edition

SUBROUTINES, VOLUME II AC$CAT

directory and Protect access is not available on its parent, Owner
access is required on the object. Use access is required for each
intermediate subdirectory in the path.

To create an access category and to set specific ACLs, refer to the
AC$SET subroutine, described later in this chapter.

For more information on the use of access categories, refer to the
Prime User's Guide.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 2-4

ACCESS CONTROL

AC$CHG

Purpose

Modify an existing ACL on an object.

Usage

DCL AC$CHG ENTRY (CHAR (128) VAR, PTR, FIXED BIN);

CALL AC$CHG (name, acl_ptr, code);

Parameters

name

INPUT. Pathname or objectname of the object whose ACL is to be
modified.

acl_ptr

INPUT. Pointer to the ACL structure (the structure declaration is
described with AC$LST, later in this chapter).

code

OUTPUT. Standard error code.

Discussion

AC$CH6 updates an existing ACL with new data. It performs the same
function as the EDIT_ACCESS (EDAC) command described in the PRIMOS
Commands Reference Guide. The object whose access is to be changed
must be an existing access category or a specifically protected object.
If it is not, an error is returned.

If the object whose ACL is to be changed is in the current directory,
name can be a simple objectname.

The user specifies the changes to be made to the ACL by means of an ACL
structure in the program, formatted as described under the AC$LST
subroutine, later in this chapter. Each entry must have a user-id
part, and may or may not have an access part. As in the EDAC command,
if the access half of the user-id/access pair in the structure is null,
the entry having this user-id in the ACL is removed from the ACL. If
the user-id in the structure already exists in the ACL, this user's

2-5 First Edition

SUBROUTINES, VOLUME II AC$CHG

access is changed to that specified in the structure; if the user-id ^ ^
does not exist in the ACL, the user-id and its accompanying access half y
are added to the ACL.

Protect and List access is required on the parent directory if the
object is a file, or on the object itself if it is a directory or
access category. Use access is required for each intermediate
subdirectory in the path. An attempt to use AC$CHG on an object with
password protection returns an error.

For more information on manipulating access control lists, refer to the
Prime User's Guide.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 2-6

ACCESS CONTROL

AC$DFT

Purpose

Set an object's ACL to that of its parent directory.

Usage

DCL AC$DFT ENTRY (CHAR(128)VAR, FIXED BIN);

CALL AC$DFT (name, code);

Parameters

name

INPUT. Pathname or objectname of the object whose protection is to
be changed.

code

OUTPUT. Standard error code.

Discussion

The AC$DFT call sets the protection of the object named in name to that
of the parent directory (which can itself default to that of a
directory one or more levels higher). In the absence of any specific
access control operations on a given object, the object always retains
the default access it was given when it was created.

The object must exist when the AC$DFT call is made, and can be a file,
a file directory, or a segment directory. If name is a password
directory and its parent is an ACL directory, name is converted to an
ACL directory. An attempt to use AC$DFT on an MFD is rejected.

AC$DFT requires Protect and List access for the parent of the object,
or on the object itself if it is a directory. Use access is required
at each intermediate subdirectory level. If the object is a password
directory, Owner access is required if Protect access is not available
on the parent.

For more information on manipulating access control lists, refer to the
Prime User's Guide.

2-7 First Edition

SUBROUTINES, VOLUME II AC$DFT

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 2-8

ACCESS CONTROL

AC$LIK

Purpose

Set an object's ACL like that of another object.

Usage

DCL AC$LIK ENTRY (CHAR(128)VAR, CHAR(128)VAR, FIXED BIN);

CALL AC$LIK (target—name, reference—name, code);

Parameters

target_name

INPUT. Pathname or objectname of the object to be protected.

reference_name

INPUT. Pathname or objectname of the object from which to take the
ACL.

code

OUTPUT. Standard error code.

Discussion

Both target—name and reference_name must refer to existing file system
objects. A new specific ACL is created for the target, giving it the
same protection as the reference, regardless of how the target and
reference are currently protected. If the target is a password
directory and its parent is an ACL directory, the target is converted
to an ACL directory. The reverse is not true; that is, the AC$LIK
call cannot be used to convert an ACL-protected object to a
password-protected object.

target_name or reference—name (or both) can be a simple objectname if
the object referred to is in the current directory.

AC$LIK requires Protect and List access to the target's parent, or
Protect access to target_name. It also requires List access to the
parent of reference^name.

2-9 First Edition

SUBROUTINES, VOLUME II AC$LIK

For more information on manipulating access control lists, refer to the
Prime User's Guide.

Loading and Linking Information -

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: No special action.

First Edition 2-10

ACCESS CONTROL

/pv

AC$LST

Purpose

Obtain the contents of an object's ACL.

Usage

DCL AC$LST ENTRY (CHAR(128)VAR, PTR, FIXED BIN, CHAR(128)VAR, FIXED
BIN, FIXED BIN);

CALL AC$LST (name, acl_ptr, max_entries, acl_name, acl_type, code);

Parameters

name

INPUT. Pathname or objectname of the object for which ACL contents
are desired.

acl_ptr

INPUT -> OUTPUT. Pointer to user's ACL structure, described below.

max_entries

INPUT. Maximum number of entries that the user's defined structure
can contain.

acJ name

OUTPUT. Name of the ACL protecting the object. The name is
determined by the algorithm described in the Discussion section
below.

acl_type

OUTPUT. Type of ACL protecting the object. Possible values are:

0 Specific ACL.

1 Access category.

2 Default access provided by specific ACL.

2-11 First Edition

SUBROUTINES, VOLUME II AC$LST

code

OUTPUT. Standard error code.

Discussion

AC$LST requires List access to the[parent of the object.

If the object referred to in name is in the current directory, a simple
objectname can be used in place of a pathname.

If name is null, the contents of the ACL for the current directory are
returned. If max_entries is 0, only acl_name and acl_type are
returned. The acl_name returned (which is a full pathname) is
determined by the following algorithm:

acl_name(object) = If (object category_protected)
then category name
else if (object specific_protected)

then object name
else acl_name(parent(object))

acl_.ptr points to a structure having the following format:
t

del 1 acl,
2 version fixed bin,
2 entry_count fixed bin,
2 entries(entry_count)char(80) var;

Each entry in entries is a string of the form <user-id:access>. A
valid entry might be HOLMES:LUR. The user-id part can also be a group
name such as .PRIVATE_EYES (group names start with a period).

For more information on manipulating access control lists, refer to the
Prime User's Guide.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: No special action.

First Edition 2-12

http://acl_.pt

ACCESS CONTROL

AC$RVT

Purpose

Convert an object from ACL protection to password protection.

Usage

DCL AC$RVT ENTRY (FIXED BIN) ;

CALL AC$RVT (code);

Parameters

code

OUTPUT. Standard error code. Possible values are:

E$NRIT Protect access is not available.

ESNINF List access is not available.

E$CATF The directory contains one or more access categories.

E$ADRF The directory contains one or more ACL subdirectories.

E$WTPR The disk is write-protected.

Discussion

AC$RVT converts the current directory to a password directory. The
directory must not contain any access categories or ACL subdirectories;
if it does, the call is rejected.

Protect access is required on the current directory. The SPAS$$ call
can be used to set owner and nonowner passwords on the converted
directory to other than their defaults of spaces and nulls,
respectively.

AC$RVT is provided for compatibility with systems that still use
password protection. The use of password protection is discouraged in
new programming. Information on the conversion of password directories
to ACL directories is given in the Prime User's Guide.

2-13 First Edition

SUBROUTINES, VOLUME II AC$RVT

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 2-14

ACCESS CONTROL

AC$SET

Purpose

Set a specific ACL on an object.

Usage

DCL AC$SET ENTRY (FIXED BIN, CHAR(128)VAR, PTR, FIXED BIN);

CALL AC$SET (key, name, acl_ptr, code);

Parameters

key

INPUT. Indicates caller's intentions. Possible values are:

0 Create a new ACL if one does not exist; replace it if
it already exists.

K$CREA Create a new ACL if one does not exist; return an
error if one already exists.

K$REP Replace the contents of an existing ACL; return an
error if one does not exist.

name

INPUT. Pathname of the file system object to be protected.

acl_ptr

INPUT. Pointer to an ACL structure declared in the user program
and formatted as for AC$LST, described earlier.

code

OUTPUT. Standard error code.

Discussion

The AC$SET call provides user programs with a method of creating and
replacing the ACL of an access category, a file, a file directory, or a
segment directory. If the object referred to in name is in the current
directory, a simple objectname can be used in place of a pathname.

2-15 First Edition

SUBROUTINES, VOLUME II AC$SET

The structure in which the access control information is defined is
declared in the user program in the format described for the AC$LST
call earlier in this chapter. In the absence of an entry in the
structure for the special user group $REST, the AC$SET call
automatically provides a $REST:NONE entry in the resulting ACL.

AC$SET requires Protect and List access to the parent of the object, or
Protect access to the object itself.

The action taken by AC$SET is determined by the type of the object
named in the call and by the key, as follows:

• The named object is an access category:

If the key is K$CREA, an error is returned. Otherwise, the
category's existing ACL is replaced with the new one pointed to
by acl_ptr.

• The named object is a file, a file directory, or a segment
directory:

If the file is protected by a specific ACL and the key is
K$CREA, an error is returned. Otherwise, a new specific ACL is
created and the object is pointed to it. Any existing specific
ACL is deleted. If the object is a password directory and its
parent is an ACL directory, it is converted to an ACL directory.

• The named object does not exist:

If the key is not K$REP, a new access category is created with
the given name and ACL. Otherwise, an error is returned.

To add a file system object to an existing access category, refer to
the AC$CAT subroutine, described earlier in this chapter.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: No special action.

First Edition 2-16

ACCESS CONTROL

CALAC$

Purpose

Determine whether an object is accessible for a given action.

Usage

DCL CALAC$ ENTRY (CHAR(128) VAR, PTR, CHAR (47) VAR,
CHAR(47) VAR, FIXED BIN) RETURNS (BIT(l));

have_access = CALAC$ (name, id_ptr, acc_needed, acc_gotten, code);

Parameters

name

INPUT. Pathname of the file system object to check.

id_ptr

INPUT. Pointer to the user-id structure.

acc_needed

INPUT. A list of accesses required (ignored if object is password-
protected) .

acc_gotten

OUTPUT. The list of accesses available,

code

OUTPUT. Standard error code.

have_access

RETURNED VALUE. True if acc_needed is a subset of acc_gotten, or
if the object is password-protected (in which case acc_needed is
ignored).

2-17 First Edition

SUBROUTINES, VOLUME II CALAC$

Discussion

The user-id structure pointed to by idL.ptr is the same as that for
GETID$, described later in this chapter. If id_ptr is null (the usual
case), the current user's id and groups are used.

The acc_needed and acc_gotten strings are in ASCII format. They are
strings consisting of one or more of the letters P, D, A, L, U, R, and
W, or the special modes ALL and NONE.

If the object referred to in name is in the current directory, a simple
objectname can be used in place of a pathname. If name is null, the
rights for the current directory are returned.

If CALAC$ determines that the object is password-protected, password
rights are returned in acc_gotten. If the CALAC$ call is made on the
current directory, the string "Owner" is returned if the user has Owner
rights, and "Non-owner" is returned if the user is attached with
Nonowner rights. For files, a string of the form "<owner_rights>
<non_owner_rights>" is returned, where the rights strings are either a
combination of the characters R (read), W (write), and D (delete), or
the special string NIL (no rights). For password-protected objects the
acc_needed string is ignored and have_access is always set to true.

CALAC$ requires List access to the parent of the object.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 2-18

http://idL.pt

ACCESS CONTROL

CAT$DL

Purpose

Delete an access category.

Usage

DCL CATSDL ENTRY (CHAR(128)VAR, FIXED BIN);

CALL CAT$DL (name, code);

Parameters

name

INPUT. Pathname of the access category to be deleted,

code

OUTPUT. Standard error code.

Discussion

The object specified in name must exist and must be an access category.•
If it is in the current directory, a simple objectname can be used in
place of a pathname.

When an access category is deleted, any objects that were protected by
it revert to default access (the access of their parent directory).

A specific ACL cannot be explicitly deleted. It is deleted by PRIMOS
when the object it protects is:

• deleted

• put into an access category

• given default protection

An access category that protects the MFD cannot be deleted.

2-19 First Edition

SUBROUTINES, VOLUME II CAT$DL

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 2-20

ACCESS CONTROL

GETID$

Purpose

Obtain the user-id and the groups to which it belongs

Usage

DCL GETID$ ENTRY (PTR, FIXED BIN, FIXED BIN) ;

CALL GETID$ (id_ptr, max_groups, code);

Parameters

id_ptr

INPUT -> OUTPUT. Pointer to the full_id structure, described in
the next section.

max__groups

INPUT. Maximum number- of groups that the caller's full_id
structure can contain.

code

OUTPUT. Standard error code. Possible values are:

E$BPAR icLptr is null or max_groups is less than zero.

E$BVER Invalid version number.

Discussion

The structure pointed to by icLptr has the following format:

DCL 1 full_id
2 version FIXED BIN,
2 user_id CHAR(32) VAR,
2 group_count FIXED BIN,
2 groups(group_count) CHAR(32) VAR;

version

Version number of the structure. This must be supplied by the
caller and must be 1 or 2 in Rev. 20.2.

2-21 First Edition, Update 1

SUBROUTINES, VOLUME II GETID$

user_id

The id of the calling user.

group_count

Number of groups returned to the caller. This is always the lesser
of the number specified in max_groups and the number of groups of
which the user is a member. In Rev. 20.2, a user can be a member
of up to 32 groups. If max_groups is 0, this field is not
returned.

groups

The list of groups of which the user is a member.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition, Update 1 2-22

ACCESS CONTROL

GPAS$$

Purpose

Obtain the passwords of a sub-UFD of the current UFD.

Usage

DCL GPAS$$ ENTRY (CHAR(32), FIXED BIN, CHAR(6) CHAR(6),
FIXED BIN);

CALL GPAS$$ (ufdnam, namlen, opass, npass, code);

Parameters

ufdnam

INPUT. Name of the UFD whose passwords are to be returned,

namlen

INPUT. Length in characters (1-32) of ufdnam.

opass

OUTPUT. Owner password for ufdnam.

npass

OUTPUT. Nonowner password for ufdnam.

code

OUTPUT. Standard error code.

Discussion

GPAS$$ searches for ufdnam in the current UFD; therefore, only a
simple objectnarne can be specified in ufdnam.

GPAS$$ requires Protect access to the current UFD.

2-23 First Edition

SUBROUTINES, VOLUME II GPAS$$

The following example reads both passwords of SUBUFD:

del gpas$$ entry (char(32), fixed bin, char(6) char(6),
fixed bin);

del mypass char(6); /* owner password */
del yourpass char(6); /* nonowner password */
call gpas$$ ('subufd', 6, mypass, yourpass, code);

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 2-24

ACCESS CONTROL

ISACL$

Purpose

Determine whether an object i s ACL-protected.

Usage

DCL ISACL$ ENTRY (FIXED BIN, FIXED BIN) RETURNS (BIT(l));

is__acl_dir = ISACL$ (unit, code);

Parameters

unit

INPUT. File unit to check, unit is either a file unit number or
one of the following:

-1 Current directory

0*^ -2 Home directory

-3 Initial directory

code

OUTPUT. Standard error code.

is_acl_dir

RETURNED VALUE. TRUE if directory specified in unit is an ACL
directory; otherwise returns FALSE.

Discussion

For purposes of compatibility, ACL directories and password directories
have the same type (as visible to users — internally they are
different). Therefore, some means of distinguishing between the two is
needed. ISACL$ is a function call that looks at the directory open on
unit and returns TRUE if the directory is an ACL directory.

Information on ACL and password directories can be found in the Prime
User's Guide.

2-25 First Edition

SUBROUTINES, VOLUME II ISACL$

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

,/**%

First Edition 2-26

ACCESS CONTROL

PA$DEL

Purpose

Remove an object's priority access.

Usage

DCL PA$DEL ENTRY (CHAR(32)VAR, FIXED BIN);

CALL PA$DEL (partition_name, code);

Parameters

partition_name

INPUT. Name of the partition from which to remove a priority ACL.

code

OUTPUT. Standard error code.

Discussion

Use of the PA$DEL subroutine is restricted to User 1 (the supervisor
terminal) and the System Administrator.

Refer to the PA$SET subroutine, later in this chapter, and to the
System Administrator's Guide for a discussion of priority access and
when and why it is used.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-27 First Edition

SUBROUTINES, VOLUME I I

PA$LST

Purpose

Obtain the contents of an object's priority ACL.

Usage

DCL PA$LST ENTRY (CHAR(128)VAR, PTR, FIXED BIN, FIXED BIN);

CALL PA$LST (name, acl_ptr, max_entries, code)/

Parameters

name

INPUT. Pathname or objectname of any object on the partition whose
priority ACL is to be read.

acl_ptr

INPUT -> OUTPUT. Pointer to ACL structure (described under AC$LST,
earlier in this chapter).

max_entries

INPUT. Maximum number of entries caller's structure can contain,

code

OUTPUT. Standard error code.

Discussion

The PA$LST call returns the same kind of information as the AC$LST call
does; PA$LST, however, limits its returned information to that
contained in a priority access control list previously created by a
PA$SET call. The structure containing the returned information is
declared in the user program in the same format as for the AC$LST call,
described earlier in this chapter.

Unlike the PA$DEL and PA$SET calls, use of the PA$LST call is not
restricted to User 1 or the System Administrator; it can be called by
any user who satisfies access control requirements.

First Edition 2-28

PA$LST ACCESS CONTROL

Normally, List access to the partition is required in order to
determine the logical device number, and, through that number, to get
the priority ACL. Since a priority ACL can be defined to disallow all
access to a partition, PA$LST can be called with only a partition name
(in angle brackets). In that case, it merely looks up the partition in
the logical disk table and no access is required.

Refer to the PA$SET subroutine, later in this chapter, and to the
System Administrator's Guide for a discussion of priority access and
when and why it is used.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-29 First Edition

SUBROUTINES, VOLUME I I

PA$SET

Purpose

Set priority access on an object.

Usage

DCL PA$SET ENTRY (CHAR(32) VAR, PTR, FIXED BIN);

CALL PA$SET (partition_name, acl̂ _ptr, code) ;

Parameters

partition_name

INPUT. Name of the partition to be protected.

acl_ptr

INPUT. Pointer to ACL structure,

code

OUTPUT. Standard error code.

Discussion

It is at times necessary for User 1 (the supervisor terminal) or the
System Administrator to take exclusive control of a partition for the
purpose of troubleshooting, taking system backups, or other procedures
that cannot tolerate interference from other users. Under these
circumstances, priority access can be set on the partition involved.
Priority access does not disturb existing ACLs; it introduces, while
it is in effect, a level of protection that takes precedence over an
existing ACL. When this precedence is no longer required, priority
access is removed using the PA$DEL call described earlier.

acl_ptr points to an ACL structure as described for the AC$LST
subroutine earlier in this chapter. Any existing priority ACL on the
specified partition is replaced by the new one. Unlike the action of
the AC$SET subroutine, if no $REST entry is in the ACL passed to
PA$SET, no $REST:NONE entry is supplied.

First Edition 2-30

PA$SET ACCESS CONTROL

Refer to the System Administrator's Guide for more information on
priority access and how to use it, and to the Prime User's Guide for
more information on access control.

Loading and Linking; Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-31 First Edition

SUBROUTINES, VOLUME II

SPAS$$

Purpose

Set the owner and nonowner passwords on an object.

Usage

DCL SPAS$$ ENTRY (CHAR(6), CHAR(6), FIXED BIN);

CALL SPAS$$ (owner_pw, nonowner_pw, code);

Parameters

owner_pw

INPUT. Password to set as the owner password.

nonowner_pw

INPUT. Password to set as the nonowner password,

code

OUTPUT. Standard error code.

Discussion

SPAS$$ requires Owner rights to the current UFD. Passwords intended to
be typed from the terminal should not start with a number, nor should
they contain blanks or the characters = + ! , @ { } [] () A < o r > .
Passwords should not contain lowercase characters/ but can contain any
other characters including control characters.

Passwords that are intended to be accessed only through programs can
have any bit pattern.

If the owner password supplied in the call is null, the owner password
on the UFD is set to spaces. If the nonowner password supplied in the
call is null, the nonowner password on the UFD is set to null (all 0
bits) .

First Edition 2-32

SPAS$$ ACCESS CONTROL

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-33 First Edition

3
Attaching

Attaching- is the mechanism by which a user's process becomes connected
to a file directory upon which (or subordinate to which) some operation
is to be done. This is known as setting the current attach point.

Setting the current attach point always defines the user's current
directory (sometimes known as the cache directory). In some cases the
home directory can also be defined in the same call by the appropriate
use of a key argument. Some routines temporarily alter the current
attach point during their execution; they then reset the current
attach point to be the same as the home attach point.

This chapter describes a set of system subroutines that can be used to
set the current attach point to specified directories anywhere in that
portion of the file hierarchy that is visible to the calling system.

3-1 First Edition

SUBROUTINES, VOLUME II

The following subroutines, their declarations, and their calling
sequences are described in this chapter:

AT$ Set the attach point to a directory specified by pathname.

AT$ABS Set the attach point to a specified top-level directory and
partition.

AT$ANY Set the attach point to a specified top-level directory on
any partition.

AT$HOM Set the attach point to the home directory.

AT$LDEV Set the attach point to a specified top-level directory on a
partition identified by logical disk number.

AT$OR Set the attach point to the login directory.

AT$REL Set the attach point to a directory subordinate to the
current directory.

ATCH$$ Set the attach point to a specified UFD and, optionally, make
it the home UFD.

First Edition 3-2

ATTACHING

AT$

Purpose

Set the attach point to a directory specified by pathname

Usage

DCL AT$ ENTRY (FIXED BIN, CHAR(128) VAR, FIXED BIN);

CALL AT$ (key, name, code);

Parameters

key

INPUT. Indicates whether the home as well as the current attach
point should be set. Possible values are:

K$SETC Set current attach point only. \y J

K$SETH Set home and current attach points. v w •

name

code

INPUT. Pathname or objectname of the directory to be attached to.

OUTPUT. Standard error code. Possible values are:

E$BKEY An invalid key value was passed.

The treename was invalid.

Some part of the pathname does not exist.

Use rights were unavailable at some level.

E$ITRE

E$FNTF

E$NRIT

E$NINF

E$NATT

Some node in the tree could not be accessed, and that
node's parent was missing List access.

A relative attach was attempted, but the current
attach point was invalid.

3-3 First Edition

SUBROUTINES, VOLUME II AT$

Discussion

AT$ allows the user to do a pathname attach in one call. The PRIMOS
pathname standard is followed:

• A partition name of <*> means that the attach is to the current
partition's MFD (the MFD containing the home directory in effect
at the time of the AT$ call) .

• A pathname beginning with a partition name between angle
brackets <> is a full pathname, and contains all the elements
leading to the desired directory.

• A pathname beginning with an * (asterisk) means that the attach
is made relative to the home attach point in effect at the time
of the AT$ call.

• A simple objectname indicates a top-level directory, that is, a
directory immediately subordinate to a partition's MFD.

• A pathname beginning with an objectname is interpreted as an
absolute pathname, its first element being a top-level
directory.

• A null pathname has the same effect as using the AT$HOM call,
described later in this chapter.

Note

For many commands, such as COPY or SLIST, as well as for many
subroutine calls, a simple objectname refers to an object in
the current directory. When dealing with the AT$ subroutine,
however, always keep in mind that a pathname whose first (or
only) element is an objectname (is not an asterisk or a
partition name enclosed in angle brackets) refers to a
top-level directory called objectname, not a subdirectory in
the current directory.

Use access is required to each directory appearing in a pathname,
including the MFD.

If name is a password directory with both an owner and a nonowner
password, and the supplied password matches neither, two things happen:
first, there is a five-second delay to discourage machine-aided
breaking of passwords; second, the BAD_PASSWORD$ condition is
signalled, but no error code is returned.

First Edition 3-4

AT$ ATTACHING

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-5 First Edition

SUBROUTINES, VOLUME I I

AT$ABS

Purpose

Set the attach point to a specified top-level directory and partition.

Usage

DCL AT$ABS ENTRY (FIXED BIN, CHAR(32)VAR, CHAR(39)VAR, FIXED BIN);

CALL AT$ABS (key, part_name, dir_name, code)

Parameters

key

INPUT. Specifies which attach points to change. Possible values
are:

0 Set only current attach point.

K$SETH Set current and home attach points.

part_name

INPUT. Name of the disk partition on which the directory is to be
found.

dir_name

INPUT. Name of the directory, including the password (if any),
separated from the directory name by a space.

code

OUTPUT. Standard error code.

Discussion

AT$ABS uses a partition name to specify the partition containing the
directory to be attached to. To attach via a logical disk number, use
AT$LDEV, described later in this chapter.

^ B & \

First Edition 3-6

AT$ABS ATTACHING

If part_name is null, logical device 0 (the command device) is assumed.
If part_jiame is *, the partition containing the home directory at the
time of the AT$ABS call is searched. If dir_name is null, the MFD is
assumed.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-7 First Edition

SUBROUTINES, VOLUME II

AT$ANY

Purpose

Set the attach point to a specified top-level directory on any
partition.

Usage

DCL AT$ANY ENTRY (FIXED BIN, CHAR(39)VAR, FIXED BIN);

CALL AT$ANY (key, dir_name, code)

Parameters

key

INPUT. Specifies which attach points to change. Possible values
are:

K$SETC Set only current attach point.

K$SETH Set current and home attach points.

dir_jiame

INPUT. Name of the directory, including the password (if any),
separated from the directory name by a space.

code

OUTPUT. Standard error code.

Discussion

AT$ANY differs from the AT$ABS call in that AT$ANY searches for the
named top-level directory in all active partitions in the calling
system's logical disk list, rather than on a specified partition.
Partitions are searched in logical disk number order, which means that
the local partitions are searched before the remote partitions.

The search begins with the first partition in the list (logical disk
0) . It ends (and is considered successful) upon finding the first
occurrence of the named top-level directory. Thus, if dir_name exists
on more than one partition, the second and subsequent instances of that

First Edition 3-8

AT$ANY ATTACHING

directory will never be found using the AT$ANY call; to attach to such
directories, use the AT$A6S call specifying a partition name or the
AT$LDEV call specifying a logical disk number.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-9 First Edition

SUBROUTINES, VOLUME I I

AT$HOM

Purpose

Set the attach point to the home directory.

Usage

DCL AT$HOM ENTRY (FIXED BIN);

CALL AT$HOM (code) ;

Parameters

code

OUTPUT. Standard error code.

Discussion

The AT$HOM call returns the current attach point to the home directory.
It can be used after any attach operation that attaches away from the
home directory (that is, after an attach call is made in which the
KSSETH key option was available but not used). It functions in the
same way as the ATTACH command with no argument (described in the
PRIMPS Commands Reference Guide).

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 3-10

ATTACHING

AT$LDEV

Purpose

Set the attach point to a specified top-level directory on a partition
identified by logical disk number.

Usage

DCL AT$LDEV ENTRY (FIXED BIN, FIXED BIN, CHAR(39) VAR,
CHAR(32) VAR, FIXED BIN);

CALL AT$LDEV (key, ldev, dir_name, part_name, code);

Parameters

key

INPUT. Specifies which attach points to change. Possible values
are:

0 Set only current attach point.

K$SETH Set current and home attach points.

ldev

INPUT. Logical device number of the partition on which to look for
the top-level directory.

dir__name

INPUT. Name of the top-level directory to attach to, including the
password (if any), separated from the directory name by a space.
If null, the MFD is assumed.

part_jiame

OUTPUT. Name of the partition corresponding to ldev.

code

OUTPUT. Standard error code.

3-11 First Edition

SUBROUTINES, VOLUME II AT$LDEV

Discussion

The AT$LDEV subroutine provides an alternative way to attach to a
top-level directory, using the logical disk number of the partition on
which the directory resides rather than the partition name used with
the AT$ABS call. AT$LDEV looks up the partition name corresponding to
the supplied disk number, and passes this name, along with the rest of
the arguments in the AT$LDEV call, to the AT$ABS subroutine through an
internal call.

The key argument determines whether or not to set the attach point of
the home directory, as well as the current directory, to the top-level
directory named in dir__name.

The ldev argument must be between 0 and the highest logical disk number
in the system's logical disk list. (The logical disk list can be
displayed by using the STATUS DISK command.)

If dir__name is a password directory and a password is included in the
argument, the user is attached to the directory with owner or nonowner
rights, depending on whether the owner password or the nonowner
password was supplied. If the password is not included, or is neither
the owner nor the nonowner password, the attachment is with nonowner
rights. (The password, when supplied, is separated from the directory
name by a space.)

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 3-12

ATTACHING

AT$OR

Purpose

Set the attach point to the login directory.

Usage

DCL AT$OR ENTRY (FIXED BIN, FIXED BIN);

CALL AT$OR (key, code);

Parameters

key

INPUT. Specifies which attach points to change. Possible values
are:

0 Set only current attach point.

K$SETH Set current and home attach points,

code

OUTPUT. Standard error code.

Discussion

A user's process, when the user first logs in, is attached to the
directory designated by the System Administrator as that user's login,
or origin, directory. During the course of a terminal session, the
process will frequently attach to other directories (sometimes,
perhaps, unbeknownst to the caller). The AT$OR call is used to
reconnect the process to the origin directory; it functions in the
same way as the ORIGIN command (described in the PRIMPS Commands
Reference Guide).

3-13 First Edition

SUBROUTINES, VOLUME II AT$OR

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 3-14

ATTACHING

AT$REL

Purpose

Set the attach point to a directory subordinate to the current
directory.

Usage

DCL AT$REL ENTRY (FIXED BIN, CHAR(39)VAR, FIXED BIN);

CALL AT$REL (key, dir_name, code);

Parameters

key

INPUT. Specifies which attach points to change. Possible values
are:

K$SETC Set only current attach point.

K$SETH Set current and home attach points.

dir_name

INPUT. Name of the directory, including the password, if any,
separated from the directory name by a space. dir_name must exist
in, and be immediately subordinate to, the current directory.

code

OUTPUT. Standard error code.

Discussion

The AT$REL call enables the user program to attach to a subdirectory at
the next level down from the current directory. AT$REL must be called
once for each level the program needs to go down. Each call results in
setting the current attach point (and optionally the home attach point)
one level lower.

3-15 First Edition

SUBROUTINES, VOLUME II AT$REL

The AT$ subroutine, described earlier in this chapter, can be used to
attach, through a single subroutine call, to a directory more than one
level down from the current directory; use the AT$ call with the
following pathname form:

*>dir_name_l>dir_name_2>...

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition 3-16

ATTACHING

ATCH$$

Purpose

Set the attach point to a specified UFD and, optionally, make it the
home UFD.

This subroutine is considered obsolete/ and its use in new programming
is discouraged. Use an appropriate AT$ call instead. Users
maintaining existing programs that call ATCH$$ can refer to Appendix A
for a complete description of the subroutine.

3-17 First Edition

4
File and Directory

Manipulation

This chapter describes the group of subroutines and functions used to
perform various actions on file system objects after a user's process
has met access control requirements and set its attach point to the
appropriate place in the file sys-tem.

Subroutines are provided to perform the general categories of actions
listed below:

• Creating and deleting file system objects

• Obtaining information about disks in use and their locations/
and about directories, files, and their attributes

• Opening named files, file directories, and segment directories

• Opening numbered segment directory entries

• Reading, writing, positioning, and checking the existence of
file system objects

• Closing file system objects by name or file unit number

• Manipulating names, suffixes, attributes, read/write modes, and
directory quotas

4-1 First Edition, Update 1

SUBROUTINES, VOLUME II

The subroutines described in this chapter do not use the search rules
facility. Chapter 7 of this volume includes descriptions of OPSR$ and
OPSRS$, which use search rules to locate and open files.

The following subroutines, their declarations, and their calling
sequences are described in this chapter:

APSFX$ Append a specified suffix to a pathname.

CH$MOD Change the open mode of an open file.

CL$FNR Close a file by name and return a bit string indicating
closed units.

CLO$FN Close a file system object by pathname.

CLO$FU Close a file system object by file unit number.

CNAM$$ Change the name of an object in the current directory.

CREA$$ Create a new subdirectory in the current directory.

CREPW$ Create a new password directory.

DIR$CR Create a new directory.

DIR$LS Search for specified types of entries in a directory open
on a file unit.

DIR$RD Read sequentially the entries of a directory open on a
file unit.

DIR$SE Return entries meeting caller-specified selection
criteria in a directory open on a file unit.

ENT$RD Return the contents of a named entry in a directory open
on a file unit.

EQUAL$ Generate a filename based on another name.

EXTR$A Return a file system object's entryname and parent
directory pathname.

FIL$DL Delete a file identified by a pathname.

FINFO$ Return information about a specified file unit.

FNCHK$ Verify a supplied string as a valid filename.

FORCEW Force PRIMOS to write modified records to disk.

GPATH$ Return the pathname of a specified unit, attach point or
segment.

First Edition, Update 1 4-2

FILE AND DIRECTORY MANIPULATION

ISREM$

LDISK$

LUDSK$

PAR$RV

PRWF$$

Q$READ

Q$SET

RDEN$$

RDLIN$

SATR$$

SGD$DL

SGD$EX

SGD$OP

SGDR$$

SIZES

SRCH$$

SRSFX$

TNCHK$

TSRC$$

UNITS$

WILD$

WTLIN$

Determine whether an open file system object is local or
remote.

Return information on the system's list of logical disks.

List the disks a given user is using.

Return a logical value indicating whether a specified
partition supports ACL protection and quotas.

Read, write, position, or truncate a file.

Return directory quota and disk record usage information.

Set a quota on a subdirectory in the current directory.

Position in or read from a directory.

Read a line of characters from an ASCII disk file.

Set or modify an object's attributes in its directory
entry.

Delete a segment directory entry.

Determine if a segment directory entry exists.

Open a segment directory entry.

Position in, read an entry in, or modify the size of a
segment directory.

Return the size of a file system entry.

Open, close, delete, change access, or verify the
existence of an object.

Search for a file with a list of possible suffixes.

Verify a supplied string as a valid pathname.

Open a file anywhere in the PRIMOS file structure.

Return the minimum and maximum file unit
currently in use by this user.

numbers

Return a logical value indicating whether a wildcard name
was matched.

Write a line of characters to a file in compressed ASCII
format.

4-3 First Edition, Update 1

SUBROUTINES, VOLUME I I

APSFX$

Purpose

Append a specified suffix to a pathname.

Usage

DCL APSFX$ ENTRY (CHAR(12 8)VAR, CHAR (128)VAR, CHAR(32)VAR,
FIXED BIN);

CALL APSFX$ (in_pathname, out_pathname, suffix, code);

Parameters

in_pathname

INPUT. Pathname input to check for suffix (128 character maximum).

out_pathname

OUTPUT. Pathname returned to caller with desired suffix appended
(128 character maximum) .

suffix

INPUT. This is the suffix to be added to the pathname. It should
include the period, and be in capital letters, for example, .F77
(32 character maximum).

code

OUTPUT. Standard error code. Possible values are:

-1 Suffix already present, pathname remained unchanged.

0 Suffix appended successfully.

E$NMLG Pathname added to suffix is more than 128 characters
or filename added to suffix is longer than 32
characters.

First Edition, Update 1 4-4

APSFX$ FILE AND DIRECTORY MANIPULATION

Discussion

The APSFX subroutine is designed for use with the object-naming
convention that appends suffixes to an object name by means of a
period, such as MYPROG.CBL. (Refer to the Prime User's Guide for a
discussion of suffixes.) The pathname is checked for the prior
existence of the suffix to avoid overwriting an existing object.

APSFX$ does not permanently change the name of the object; it changes
only the name returned in out-pathname. It is most often used after an
SRSFX$ call. After SRSFX$ finds an object and determines its suffix,
APSFX$ can be used to add a suffix to the base name found in order to
generate a name for a related file.

APSFX$ is often helpful because SRSFX$ returns two parts to a name —
the basename and a suffix. APSFX$ ensures that the name in
out-pathname has the proper suffix if one is required.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

4-5 First Edition, Update 1

SUBROUTINES, VOLUME I I

CH$MOD

Purpose

Change the open mode of an open file.

Usage

DCL CH$MOD ENTRY (FIXED BIN, FIXED BIN, FIXED BIN);

CALL CH$MOD (key, unit, code);

Parameters

key

INPUT. Mode to be set. Possible values are:

K$READ Read (input-only) mode

K$WRIT Write (output-only) mode

K$RDWR Read/write (input/output) mode

unit

INPUT. File unit number on which file whose mode is to be changed
is open.

code

OUTPUT. Standard error code.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 4-6

FILE AND DIRECTORY MANIPULATION

CL$FNR

Purpose

Close a file by name and return a bit string indicating closed units

Usage

DCL CL$FNR ENTRY(CHAR(128) VAR,
1, 2 FIXED BIN (15) ,

2 (*) BIT (16) ALIGNED,
FIXED BIN, FIXED BIN);

CALL CL$FNR (pathname, rtn_list, first_file_unit, code);

Parameters

pathname

INPUT. Pathname of object to be closed.

rtn_list

OUTPUT. Bit string indicating file units closed, relative to
first_file_unit.

first_file_unit

OUTPUT. Lowest file unit number closed by this call,

code

OUTPUT. Standard error code.

Discussion

The CL$FNR subroutine closes all of the open file units associated with
the file name specified in pathname. The bit string returned in
rtn_list indicates the file unit numbers closed relative to the number
returned in first_file_unit. For example, if file units 31, 36, and 40
were open and associated with the file named in pathname, then
first_file_unit returns 31, and the rtn_list returns the bit string
1000010001. The first 1-bit represents file unit 31, the next 1-bit
represents file unit 36, and the final 1-bit file unit 40. The
intervening file unit numbers 32-35 and 37-39 were either not open or
not associated with pathname, and hence were not closed by this call.

4-7 First Edition, Update 1

SUBROUTINES, VOLUME II CL$FNR

The UNITS$ call, described later in this chapter, can be used to
determine the highest open unit number, and hence the size of rtn_list.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

First Edition, Update 1 4-8

FILE AND DIRECTORY MANIPULATION

CLO$FN

Purpose

Close a file system object by pathname.

Usage

DCL CLO$FN ENTRY (CHAR(128) VAR, FIXED BIN);

CALL CLO$FN (pathname, code);

Parameters

pathname

INPUT. Pathname of object to be closed.

code

OUTPUT. Standard error code.

Discussion

The CLO$FN call closes one or more file units associated with the
object named in pathname. Only file units opened by the calling user
are closed. Unlike the CL$FNR call described earlier in this chapter,
the identities of the file units closed are not returned.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries

R-mode: Not available.

Load NPFTNLB.

4-9 First Edition, Update 1

SUBROUTINES, VOLUME I I

CLO$FU

Purpose

Close a file system object by file unit number,

Usage

DCL CLO$FU ENTRY (FIXED BIN, FIXED BIN);

CALL CLO$FU (unit, code);

Parameters

unit

INPUT. File unit number to close,

code

OUTPUT. Standard error code.

Discussion

The CLO$FU call closes only the file unit specified in unit, regardless
of how many file units may be associated with the same object. That
is, if the file MYFILE is open on file units 31, 3 6, and 40, and a
CL0$FU call is issued for file unit 36, only the instance of MYFILE
that is open on file unit 36 is closed.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries:

R-mode: Not available.

Load NPFTNLB,

First Edition, Update 1 4-10

FILE AND DIRECTORY MANIPULATION

CNAM$$

Purpose

Change the name of an object in the current directory.

Usage

DCL CNAM$$ ENTRY (CHAR(32), FIXED BIN, CHAR(32) , FIXED BIN,
FIXED BIN
[, FIXED BIN]); _^

CALL CNAM$$ (oldnam, oldlen, newnam, newlen, code
[, ok_open]);

Parameters

oldnam

INPUT. Name of the file to be changed,

oldlen

INPUT. Length in characters of oldnam.

newnam

INPUT. New name of the file,

newlen

INPUT. Length in characters of newnam.

code

OUTPUT. Standard error code.

ok_open

OPTIONAL INPUT. Permits name changing on an open file. Set to 1
to enable this function, otherwise omit. Valid only when oldnam
and newnam are of equal length.

4-11 First Edition, Update 1

SUBROUTINES, VOLUME II CNAM$$

Discussion

The user must have Delete and Add access to the parent directory of the
object to change the object's name.

CNAM$$ does not change the date/time last modified (DTM) or the
date/time last accessed (DTA) or any of the other attributes of the
object- However, the DTM and DTA of the directory in which the object
resides are changed. CNAM$$ causes the position of the object's name
in its parent directory to change with respect to those of other
objects if the new name is longer than the old name.

It is invalid to attempt to change the name of the MFD, BOOT, or BADSPT
objects. An E$NRIT error message is generated if this is attempted.

Ordinarily, changing the name of an object is done only while the
object is closed. However, it is possible, by means of the ok_open
parameter, to change an object's name while the file is open, provided
the old name and the new name are equal in length. If they are not,
and the value of ok_open is 1, an error is returned.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition, Update 1 4-12

FILE AND DIRECTORY MANIPULATION

CREA$$

Purpose

Create a new subdirectory in the current directory.

This subroutine is considered obsolete, and its use in new programming
is discouraged. Use DIR$CR instead. Users maintaining existing
programs that call CREA$$ can refer to Appendix A for a complete
description of the subroutine.

4-13 First Edition, Update 1

SUBROUTINES, VOLUME I I

CREPW$

Purpose

Create a new password directory.

This subroutine is considered obsolete, and its use in new programming
is discouraged. Use DIR$CR instead. Users maintaining existing
programs that call CREPW$ can refer to Appendix A for a complete
description of the subroutine.

<**s3sB!\

First Edition, Update 1 4-14

FILE AND DIRECTORY MANIPULATION

DIR$CR

Purpose

Create a new directory.

Usage

DCL DIR$CR ENTRY (CHAR(128) VAR, POINTER, FIXED BIN(15));

CALL DIR$CR (pathname, attribute_pointer, code)/

Parameters

pathname

INPUT. Pathname of the directory to be created.

attribute_pointer

INPUT. Pointer to a program-declared block of attributes to be
given to the new directory. The attribute structure is described
below.

code

OUTPUT. Standard error code.

Discussion

The DIR$CR call replaces the obsolete subroutines CREA$$ and CREPW$.

DIR$CR allows you to create an ACL directory or a password directory
anywhere in the file system. The caller must have Add permission to
the parent directory.

If the pathname parameter is an entryname (that is, it contains no
> characters), the directory is created at the current attach point.

4-15 First Edition, Update 1

SUBROUTINES, VOLUME II DIR$CR

The structure pointed to by attribute_pointer is expected to have the
following declaration (all elements are input):

DCL 1 attributes,
2 version FIXED BIN(15),
2 dir_type FIXED BIN(15),
2 max_quota FIXED BIN(31),
2 access_cat CHAR(32)VAR;

version

Structure version number. Currently must be 1.

dir_type

Type of directory to create. Possible values are:

K$SAME New directory has same type as the parent directory.

K$PWD New directory is a password directory. Owner and
nonowner passwords are set to their defaults of spaces
and nulls, respectively.

max_quota

Maximum quota for new directory. The disk must be a quota disk.

access_cat

Entryname for an access category by which the new directory will be
protected (input). Not permitted if the parent directory is a
password-protected directory.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 4-16

FILE AND DIRECTORY MANIPULATION

DIR$LS

Purpose

Search for specified types of entries in a directory open on a file
unit.

Usage

DCL DIR$LS ENTRY (FIXED BIN, FIXED BIN, BIT(l), BIT (4), PTR,
FIXED BIN, PTR, FIXED BIN, FIXED BIN,
FIXED BIN, (4) FIXED BIN, FIXED BIN(31),
FIXED BIN(31), FIXED BIN);

CALL DIR$LS (dir__unit, dir_type, initialize, desired_types,
wild_ptr, wild_count, return_ptr, max_entries,
entry_size, ent_returned, type_counts,
before_date, after_date, code)/

Parameters

dir_unit

INPUT.

dir_type

INPUT.

2

3

4

initialize

INPUT.

Unit on which the directory to be searched is open.

Type of object open on dir_unit

SAM segment directory

DAM segment directory

User directory

Possible values are:

If set, the directory is to be reset to the beginning;
otherwise, it is searched from the current position. This enables
large directories to be dealt with in more than one call, making a
large buffer area in the calling program unnecessary.

4-17 First Edition, Update 1

SUBROUTINES, VOLUME II DIR$LS

desired_types

INPUT. A bit-encoded field defining what types of directory
entries the caller wants to have returned. In the following table,
if the bit is set the specified type is returned:

'1000'b Directories

'0100'b Segment directories

'0010'b Files

'0001'b Access categories

If all bits are set, type is not used as a selection criterion.

wild_ptr

INPUT. Pointer to list of wildcard names for which to search. The
list is an array of CHAR(32) varying strings; the wilcard names
must be uppercase. Wildcards are explained in the Prime User's
Guide.

wild_count

INPUT. Number of names in list pointed to by wild_ptr. If
wild_count is 0, wildcards are not used as a selection criterion.

return_ptr

INPUT -> OUTPUT. Pointer to caller's return structure. The data
structure returned is declared in the program as described below.

max_entries

INPUT. Maximum number of entries that caller's structure can
contain.

entry_size

INPUT. Number of halfwords reserved for each directory entry in
caller's structure. max_entries multiplied by entry_size defines
the size of the caller's structure in halfwords. In Rev. 20.2, the
normal size of a returned directory entry is 31 halfwords.

ent_returned

OUTPUT. Number of entries returned in the current call. This
number, is always less than or equal to roax_entries.

First Edition, Update 1 4-18

DIR$LS FILE AND DIRECTORY MANIPULATION

type_counts

OUTPUT. Number of entries of each type returned. Counts are
returned in the order of files, segment directories, directories,
access categories, the sum of all giving the current total number
of entries. At Rev. 20.2, they are reset to zero when the
initialize bit is set.

before_date

INPUT. Entries with date/time modified earlier than this date are
selected. The date is given in standard FS format, described
below.

If the value of before_date is 0, it is not used as a selection
criterion.

after_date

INPUT. Entries with date/time modified later than this date are
selected. The date is given in standard FS format, described
below.

If the value of after_date is 0, it is not used as a selection
criterion.

code

OUTPUT. Standard error code (output). Possible values are:

E$BUNT dir_unit specified an illegal unit number.

E$UNOP dir_unit is not open.

E$EOF There are no more entries in the directory.

Discussion

DIR$LS is a general-purpose file directory scanner. It selects
directory entries by name (handling wildcards), type, and date/time
modified (DTM). It can also be used to search segment directories.

The directory must have been previously opened on some unit with one of
the standard PRIMOS object-opening routines. List access is required
to open directories.

The directory is searched sequentially from its beginning (if the
initialize bit was set) or from the current position (if it was not).
As each entry is read, it is checked against all of the selection
criteria. If the entry meets all the criteria, it is copied into the
caller's buffer. The search ends when there are no more entries in the
directory or the caller's buffer becomes full, whichever occurs first.

4-19 First Edition, Update 1

SUBROUTINES, VOLUME II DIR$LS

All entries in the directory are returned if wild_count/ before_date
and after_date are 0, and desired_types is 'llll'b.

The structure of a returned directory entry is:

DCL 1 dir_entry,
2 ecw/

3 type BIT(8),
3 length BIT(8),

2 entryname CHAR(32) VAR,
2 protection,

3 owner_rights,
4 spare BIT(5),
4 delete BIT(l),
4 write BIT(l),
4 read BIT(l),

3 delete_protect BIT(l),
3 non_owner_rights,

4 spare BIT(4),
4 delete BIT{1),
4 write BIT(l),
4 read BIT(l),

2 file_info,
3 long_rat_hdr BIT(l),
3 dumped BIT(l),
3 dos_jnod BIT (1) ,
3 special BIT (1),
3 rwlock: BIT (2) ,
3 spare BIT(2),
3 type BIT(8),

2 date_time_mod FIXED BIN(31),
2 non_default_acl BIT(l) ALIGNED,
2 logical_type FIXED BIN,
2 trunc BIT(l) ALIGNED,
2 date_time_backed_up FIXED BIN(3i;

ecw.type

Entry control word for the entry. Values are:

2 Normal directory entry (file, directory, or segment
directory)

3 An access category

ecw.length

24 halfwords•for PRIMOS revisions up to and including 19.2, 27
halfwords for revisions from 19.3, and 31, halfwords from Rev. 20.0
onward.

First Edition, Update 1 4-20

DIR$LS FILE AND DIRECTORY MANIPULATION

entryname

Name of the entry, in uppercase.

protection.owner_rights

The rights granted to a user when attached to the containing
directory having given the owner password.

protect ion.delete_protect

The setting of the ACL delete-protect switch. If this bit is on,
the file cannot be deleted. The bit can be reset by a call to the
SATR$$ subroutine.

protection.non_owner_rights

The rights granted to a user when attached to the containing
directory having given the non-owner password or no password.

file_info.long_rat_hdr

If set, indicates that the file is a Disk Record Availability Table
(DSKRAT) containing more than one record.

file_info.dumped

If set, the file has been backed up by MAGSAV.

f ile_inf o. dos_mod

If set, the file was modified while PRIMOS II (DOS) was running.

file_info.special

If set, the file is special (e.g., DSKRAT, BOOT, MFD) and cannot be
deleted.

file_info.rwlock

Indicates the setting of the file's read/write concurrency lock,
which can be set with the PRIMOS RWLOCK command. Values are:

0 Use system default setting (SYS option).

1 Unlimited readers or one writer (EXCL option).

2 Unlimited readers and one writer (UPDT option).

3 Unlimited readers and writers (NONE option).

file_info.spare

Two bits presently undefined.

4-21 First Edition, Update 1

SUBROUTINES, VOLUME II DIR$LS

file_info.type

Indicates the type of object described by this entry. Possible
values are:

0 SAM file

1 DAM file

2 SAM segment directory

3 DAM segment directory

4 Directory

6 Access category

7 CAM file

da t e_t ime_mod

The date/time the file was last modified, in standard FS format.
FS-format dates are described in Appendix C of Volume III.

non_default_acl

This bit is set if the object is not protected by the default ACL;
that is, it is protected by a specific ACL or by an access
category.

logical_type

This is an additional file type to the physical file type described
in file_info.type. Possible values are:

0 Normal file

1 Recovery based file (RBF)

trunc

This bit is set if the file has been truncated by the FIX_DISK
utility; otherwise, it is zero.

date_t ime_backed_up

Reserved for future use. This field is currently returned as zero
(unset).

First Edition, Update 1 4-22

DIR$LS FILE AND DIRECTORY MANIPULATION

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-23 First Edition, Update 1

SUBROUTINES, VOLUME I I

DIR$RD

Purpose

Read sequentially the entries of a directory open on a file unit

Usage

DCL DIR$RD ENTRY (FIXED BIN, FIXED BIN, PTR, FIXED BIN,
FIXED BIN);

CALL DIR$RD (key, unit, return_ptr, max_return_len, code);

Parameters

key

INPUT. Indicates whether to initialize for subsequent reading or
to read from current position. Possible values are:

K$INIT Initialize to directory header. ' ̂ ^'^J,, *

K$READ Read from current position.

unit

INPUT. Unit number on which directory is open. User must have
List access to the directory.

return_ptr

INPUT -> OUTPUT. Pointer to program-declared directory structure
(described below).

majc_return_len

INPUT. Size of user's buffer. V\^\^ W

code

OUTPUT. Standard error code.

First Edition, Update 1 4-24

DIR$RD FILE AND DIRECTORY MANIPULATION

r Discussion

The return_ptr points to a directory entry structure with the following
format. Note that ecw is actually a halfword.

DCL 1 dir_entry BASED,
2 ecw,

3 type BIT(8),
3 length BIT(8),

2 name CHAR(32),
2 pw_protection BIT (16) ALIGNED, **-
2 non_default_protection BIT(l) ALIGNED, "1.
2 file_info,

3 long_rat_hdr BIT(l),
3 dumped_bit BIT(l),
3 dos_mod BIT(l),
3 special BIT(l),
3 rwlock BIT(2),
3 reserved BIT(2),
3 type BIT(8), _

2 date_time_modified,
3 date,

4 year BIT(7),
4 month BIT (4) , '-'""
4 day BIT(5),

3 time FIXED BIN,

r 2 spare (2) FIXED BIN,
2 trunc BIT(l) ALIGNED,
2 dtb like date_time_modified,
2 dtc like date_time_modified,
2 dta like date_time_modified;

ecw.type

Entry control word for the entry. Values are:

2 Normal directory entry (file, directory, or segment
directory)

3 Access category

User programs should ignore any entry-types that are not
recognized. This allows future expansion of the file system
without adversely affecting existing programs.

ecw.length

24 halfwords for PRIMOS revisions up to and including 19.2, 27
halfwords for revisions from 19.3, and 31 halfwords from 20.0
onward.

4-25 First Edition, Update 1

SUBROUTINES, VOLUME II DIR$RD

name

The name of the entry, in uppercase, left-justified and filled with
spaces.

pw_protection

Owner and nonowner protection attributes. The owner rights are in
the high-order eight bits, the nonowner in the low-order eight
bits. The meanings of the bit positions are as follows (a set bit
grants the indicated access right):

1-5,9-13 Reserved for future use

6.14 Delete/truncate rights

7.15 Write-access rights

8.16 Read-access rights

non_default_protection

Set to true ('l'b) if the entry is not default-protected; it is
either protected specifically or by an access category.

file_info.long_rat_hdr

If set, indicates that the file is a Disk Record Availability
(DSKRAT) file spanning more than one disk, record.

file_info.dumped_bit

If set (=1), this file has been saved by MAGSAV and has not been
modified since then.

file_info.dos_mod

If set, this file was modified while PRIMOS II (DOS) was running.
It indicates that the date/time last modified field may be
incorrect.

file_info.special

If set, this is a special file (for example, DSKRAT, BOOT, MFD) and
cannot be deleted.

First Edition, Update 1 4-26

DIR$RD FILE AND DIRECTORY MANIPULATION

file_info.rwlock

Indicates the setting of the file's read/write concurrency lock.

Possible values are:

0 System default setting

1 Unlimited readers or one writer (exclusive)

2 Unlimited readers and one writer (update)

3 Unlimited readers and writers (none)

file_info.type

Indicates the type of object described by this entry. Possible
values are:

0 SAM file

1 DAM file

2 SAM segment directory

3 DAM segment directory

4 User directory

6 Access category

7 CAM file

da t e_t ime_mod i f i e d

The date and time, in standard FS format, that the entry was last
modified.

trunc

This bit is set if the entry has been truncated by the FIX_DISK
utility; otherwise, reset to zero.

dtb

Date and time the file was last backed up.

dtc

Date and time the file was last created,

dta

Date and time the file was last accessed.

4-27 First Edition, Update 1

SUBROUTINES, VOLUME II DIR$RD

FS-format dates are structured as described in Appendix C of
Volume III.

DIR$RD only returns entries for named objects. Thus it does not return
the ecw (entry control word) for the directory header. The types are 2
for a file or directory, and 3 for an access category.

Note

Calls to DIR$RD and ENT$RD should not be made on the same
directory file unit unless DIR$RD is called with the K$INIT key
following each ENT$RD call.

Loading and Linking Information

V-mode and I-rnode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 4-28

FILE AND DIRECTORY MANIPULATION

DIR$SE

Purpose

Return entries meeting caller-specified selection criteria
directory open on a file unit.

in

Usage

DCL DIR$SE ENTRY (FIXED BIN, FIXED BIN, BIT(l), PTR, PTR,
FIXED BIN, FIXED BIN, FIXED BIN, FIXED BIN,
FIXED BIN, FIXED BIN);

CALL DIR$SE (dir_unit, dir_type, initialize, sel_ptr,
return_ptr, max_entries, entry_size,
ent_returned, type_counts, max_type, code);

Parameters

dir_unit

INPUT. Unit on which directory to be searched is open.

dir_type

Type of object open on dir_unit. Possible values are:

SAM segment directory

DAM segment directory

User directory

INPUT.

2

3

4

initialize

INPUT. If set (='l'b), directory is to be reset to the beginning.
If not set, the directory is to be searched from the current
position.

sel_ptr

INPUT. Pointer to the structure containing selection criteria
See the Discussion section.

4-2 9 First Edition, Update 1

SUBROUTINES, VOLUME II DIR$SE

return_ptr

INPUT -> OUTPUT. Pointer to caller's return structure for selected
entry data. This parameter points to where the subroutine places
the output. See the Discussion section.

max_entries

INPUT. Maximum number of entries to be returned. If the value of
initialize is 1, and if the call is being used only to initialize
the directory search, and not to return any entries, this parameter
is zero.

entry_size

INPUT. Number of halfwords to be returned per entry. Permissible
values of entry_size are given in the length entry in the
description of the entry control word (see the Discussion section).

ent_returned

OUTPUT. Number of entries returned.

type_counts

INPUT/OUTPUT. Number of entries of each type returned in this
order: files, segment directories, directories, access categories.
This parameter is a 4-halfword array. The type-counts are
incremented each time DIR$SE is called; that is, the number of
types returned in this call of DIR$SE is added to the current
type-count totals. When the "initialize" bit is set, these counts
are reset to the total number of types returned in this call.

max_type

INPUT. Number of types in type_counts (currently must be 4).

code

OUTPUT. Standard error code. Possible values are:

E$BVER

E$BPAR

E$EOF

E$ST19

Invalid version
structure.

number for selection criteria

Bad max_type (currently must be 4) .

There are no more entries in the directory to be
selected.

Selection criteria involving RBF file type or
date/time last backed up, accessed, or created have
been specified, and the PRIMOS revision that accesses
the directory does not support these features.

First Edition, Update 1 4-30

DIR$SE FILE AND DIRECTORY MANIPULATION

Discussion

The selection criteria should be
structures. The first field in the
which of the two structures the
provided for compatibility with Revi
but can be used if the date/time a
are not used as selection criteria.
Revision 20.0 and subsequent revis
point to the structure.

supplied in one of the following
structure, version_no, indicates
caller is providing. Version 0 is
sion 19.4 of the operating system,
ccessed or date/time created fields
Version 1 should be used for

ions. The seJ ptr parameter should

Version 0

DCL 1 selection_criteria BASED,
2 version_no FIXED BIN, /* Must be
2 wild_ptr PTR OPTIONS(SHORT),
2 wild_count FIXED BIN,
2 desired_types,

3 dirs BIT(l) ,
3 seg_dirs BIT(l),
3 files BIT(l),
3 access_cats BIT(l),
3 RBF BIT(l),
3 spare BIT(11),

2 modified_before_date FIXED BIN(31),
2 modified_after_date FIXED BIN(31),
2 backed_up_before_date FIXED BIN(31),
2 backed_up_after_date FIXED BIN(31);

Version 1

DCL 1 selection_criteria BASED,
2 version_no FIXED BIN, /* Must be
2 wild_ptr PTR OPTIONS(SHORT) ,
2 wild_count FIXED BIN,
2 desired_types,

3 dirs BIT(l),
3 seg_dirs BIT(l),
3 files BIT(l),
3 access_cats BIT(l),
3 RBF BIT(l) ,
3 spare BIT(11),

2 modified_before_date FIXED BIN(31),
2 modified_after_date FIXED BIN(31),
2 backed_up_before_date FIXED BIN(31),
2 backed_up_after_date FIXED BIN(31),
2 created_jDefore_date FIXED BIN (31),
2 created_after_date FIXED BIN(31),
2 accessed_before_date FIXED BIN(31),
2 accessed_after_date FIXED BIN(31);

4-31 First Edition, Update 1

SUBROUTINES, VOLUME II DIR$SE

version_no

Must be 0 for the first version (Version 0) of the selection
criteria structure/ or 1 for the second version (Version 1).

wild_ptr

If wildcard entryname selection is to be applied to the directory
entries, this field points to a list of wildcard names for which to
search. The list is an array of CHAR(32) varying strings, and the
names must be in uppercase. Wildcards are explained in the Prime
User's Guide and the PRIMPS Commands Reference Guide.

wild_count

Is the number of names in the list pointed to by wild_ptr. If
wild_count is zero, entryname is not used as a selection criterion.

desired_types

A bit-encoded field defining which types of directory entries the
caller wishes to have returned. The first four bits of this field
specify the physical types of the entries that are to be returned.
The fifth bit can be used in combination with the other four bits
to select entries that are also RBF entries, and thus have a
logical type of '1'. To select only RBF segment directories, the
seg_dirs and RBF bits are both set, and the other bits are not set.
If the first four bits are set, all entries are returned. If all
five bits are set, all entries that are also RBF entries are
returned.

The fields listed below select entries based on one of the four date
attributes. The input date is in standard FS format, or is zero if
this field is not to be used as a selection criterion:

modified_before_date

Selects entries with date/time modified earlier than this date.

modified_after_date

Selects entries with date/time modified later than this date.

backed_up_before_date

Selects entries with date/time backed up earlier tnan this date.
The date/time backed up field is set by the BRMS backup utility.

backed_up_after_date

Selects entries with date/time backed up later than this date.

First Edition, Update 1 4-32

DIR$SE FILE AND DIRECTORY MANIPULATION

created_before_date

Selects entries with date/time created earlier than this date.

created_after_date

Selects entries with date/time created later than this date.

accessed_before_date

Selects entries with date/time accessed earlier than this date.

accessed_after_date

Selects entries with date/time accessed later than this date.

FS-format dates are structured as shown in Appendix C of Volume III.

DIR$SE returns the information for all the entries selected by this
call in the following structure:

DCL 1 dir_entries (*) BASED,
2 ecw,

3 type BIT(8),
3 length BIT(8),

2 entryname CHAR(32) VAR,
2 protection,

3 owner rights,
4 spare BIT(5),
4 delete BIT(l),
4 write BIT(l)
4 read BIT(l),

3 delete_protect BIT(l),
3 non_owner_rights,

4 spare BIT(4),
4 delete BIT(l),
4 write BIT(l),
4 read BIT(l) ,

2 file_info,
3 long_rat_hdr BIT(l),
3 dumped BIT(l),
3 dos_mod BIT(l),
3 special BIT(l),
3 rwlock BIT(2),
3 spare BIT(2),
3 type BIT (8),

4-33 First Edition, Update 1

SUBROUTINES, VOLUME II DIR$SE

2 date_time_mod FIXED BIN(31),
2 non_default_acl BIT(l) ALIGNED,
2 logical_type FIXED BIN,
2 trunc BIT(l) ALIGNED,
2 date_time_backed_up FIXED BIN(31),
2 date_time_created FIXED BIN(31),
2 date_time_accessed FIXED BIN(31);

ecw.type

Entry control halfword for the entry. Values are:

2 Normal directory entry (file, file directory, or
segment directory)

3 Access category

ecw.length

24 halfwords for PRIMOS revisions up to and including 19.2, 27
halfwords for revisions from 19.3, and 31 halfwords from Rev. 20.0
onward.

entryname

Name of the entry, in uppercase.

protection.owner_rights

Rights granted to a user when attached to the containing directory
with owner rights.

protection.delete_protect

If this bit is set, the file cannot be deleted. The bit can be
reset by a call to the SATR$$ routine.

protection.non_owner_rights

Rights granted to a user when attached to the containing directory
with nonowner rights.

file_info.long_rat_hdr

If set, indicates that the file is a Disk Record Availability
(DSKRAT) file spanning more than one disk record.

file_info.dumped

If set, this file has been saved by MAGSAV and has not been
modified since then.

First Edition, Update 1 4-34

DIR$SE FILE AND DIRECTORY MANIPULATION

^ ^ file_info.dos_mod

If set, this file was modified while PRIMOS II (DOS) was running.
It indicates that the date/time last modified field may be
incorrect.

file_info.special

If set, this is a special file (for example, DSKRAT, BOOT, MFD) and
cannot be deleted.

file_info.rwlock

Indicates the setting of the file's read/write concurrency lock.
Possible values are:

0 System default setting

1 Unlimited readers or one writer (exclusive)

2 Unlimited readers and one writer (update)

3 Unlimited readers and writers (none)

file_info.type

f^ Indicates the type of object described by this entry. Possible

v values are:

0 SAM file

1 DAM file

2 SAM segment directory

3 DAM segment directory

4 User directory

6 Access category

7 CAM file

date_t ime_mod

The date/time the file was last modified, in standard file system
format. FS-format dates are coded as shown in Appendix C of
Volume III.

4-35 First Edition, Update 1

SUBROUTINES, VOLUME II DIR$SE

non_default_acl

This bit is set if the object is not protected by the default ACL
— that is, if it is protected by a specific ACL or by an access
category.

logical_type

This is an additional file type to the physical file type described
in file_info.type. Possible values are:

0 Normal files

1 RBF files

trunc

This bit is set if the file has been truncated by the FIX_DISK
utility/ otherwise, reset to zero.

da t e_t ime_ba cked_up

This field returns the date and time the file was last saved by the
BRMS backup utility, in FS format. If it has never been saved, the
value is zero.

date_time_created

On a Rev. 20.0 partition, this field returns the date and time the
file was created, in FS format. On a Revision 19.0 partition, the
returned value is zero.

date_time_accessed

On a Rev. 20.0 partition, this field returns the date and time the
file was last accessed, in FS format. On a Revision 19.0
partition, the returned value is zero.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 4-36

FILE AND DIRECTORY MANIPULATION

ENT$RD

Purpose

Return the contents of a named entry in a directory open on a file
unit.

Usage

DCL ENT$RD ENTRY (FIXED BIN, CHAR(32)VAR, PTR, FIXED BIN,
FIXED BIN);

CALL ENT$RD (unit, name, return_ptr, max_return_len, code);

Parameters

unit

INPUT. Unit number on which the directory is open,

name

INPUT. Name of the entry to read.

return_ptr

INPUT -> OUTPUT. Pointer to program-declared return structure.

max_return_len

INPUT. Size of user's buffer,

code

OUTPUT. Standard return code.

Discussion

ENT$RD is identical to DIR$RD in what it returns, but rather than going
sequentially through the directory, ENT$RD returns data for a
particular named entry.

4-37 First Edition, Update 1

SUBROUTINES, VOLUME II ENT$RD

The structure returned by ENT$RD is identical to that described for the ^^
DIR$RD subroutine. ""^

Note

Calls to DIR$RD and ENT$RD should not be made on the same
directory file unit unless DIR$RD is called with the K$INIT key
following each ENT$RD call.

Loading and Linking Information

V-rnode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 4-38

FILE AND DIRECTORY MANIPULATION

EQUAL$

Purpose

Generate a filename based on another name.

Usage

DCL EQUAL$ ENTRY (CHAR(32) VAR, CHAR(32) VAR, CHAR(32) VAR,
FIXED BIN(15));

CALL EQUAL$ (obj_name, pattern, generated, code);

Parameters

obj_name

INPUT. The object name being submitted for transformation into the
new name.

pattern

\ INPUT. A character string that contains the generation pattern of

commands to carry out the transformation.

generated

OUTPUT. The new object name generated according to pattern,

code

OUTPUT. Standard error code.

Discussion

This routine expects an object name and a generation pattern. The
latter contains "commands" that specify how to transform the object
name into a new name called the generated name. This routine performs
that transformation. Name generation is discussed in the Prime User's
Guide.

4-39 First Edition, Update 1

SUBROUTINES, VOLUME II EQUAL$

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

/*<%\

Fi r s t Edition, Update 1 4-40

FILE AND DIRECTORY MANIPULATION

EXTR$A

Purpose

Return a file system object's entryname and parent directory pathname,

Usage

DCL EXTR$A ENTRY (CHAR (*) VAR, CHAR (*) VAR, FIXED BIN (15),
CHAR (32) VAR, FIXED BIN (15));

CALL EXTR$A (full_path, parent_path, max_length, entryname,
code);

Parameters

full_path

INPUT. Object's pathname that is to be split into a parent
directory pathname and an entryname.

parent_path

OUTPUT. Object's parent directory pathname.

max_length

INPUT. Maximum length of parent_path in characters.

entryname

OUTPUT. Last element of full_path (the part of full_path that
follows the last > symbol).

code

OUTPUT. Standard error code. Possible values are:

E$BPAR full_path is not a legal pathname.

E$BFTS The returned length of the parent directory pathname
is greater than max_length.

4-41 First Edition, Update 1

SUBROUTINES, VOLUME II EXTR$A

Discussion

Given the full pathname of a file system object, the EXTR$A subroutine
separates the pathname of the directory that immediately contains the
object from the entryname of the object, and returns them as two
separate elements. Your program can then do any appropriate directory
operations on the name returned in parent_path, and any appropriate
file operations on the name returned in entryname.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 4-42

FILE AND DIRECTORY MANIPULATION

FIL$DL

Purpose

Delete a file identified by a pathname-

Usage

DCL FIL$DL ENTRY (CHAR(128)VAR, FIXED BIN);

CALL FIL$DL (object_name, code);

Parameters

object_name

INPUT. Pathname of the object to be deleted,

code

OUTPUT. Standard error code. Possible values are:

E$ITRE object_name is not a legal treename.

E$NRIT Delete access was not available on the parent, or Use
access-was missing from some intermediate node.

E$WTPR The disk is write-protected.

E$NINF An error occurred when searching for the file, and the
directory level at which the error occurred did not
allow List access.

E$DLPR The file's delete-protect switch is set.

Discussion

FIL$DL is used to delete files and empty directories. Delete access is
required on the parent directory.

If error code E$DLPR is returned, SATR$$ must be called to reset the
delete-protect switch before the file can be deleted. This error code
is returned only if the caller has Delete access on the parent
directory and is thus allowed to reset the delete-protect switch.

4-43 First Edition, Update 1

SUBROUTINES, VOLUME II FIL$DL

Deleting an object returns its records to the DSKRAT pool of free
records and erases the entry from the directory, leaving a hole. Holes
in directories are reused for new objects if they are large enough to
contain the new object's name, so new objects do not always appear at
the end of a directory. Holes take very little room on the disk in
most cases. They are compressed out of directories when the FIX_DISK
maintenance program is run by the system operator. FI3CDISK is
described in the Operator's Guide to File System Maintenance.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 4-44

FILE AND DIRECTORY MANIPULATION

FINFO$

Purpose

Return information about a specified file unit,

Usage

DCL FINFO$ ENTRY (FIXED BIN, PTR, FIXED BIN);

CALL FINFO$ (unit, finfo_ptr, code);

Parameters

unit

INPUT. File unit on which object whose information is wanted is
open.

finfo_ptr

INPUT -> OUTPUT. Pointer to user-declared structure in which
information is to be returned.

code

OUTPUT. Standard error code.

Discussion

The FINFO$ call returns information about the object open on the
specified file unit (or attach point), including:

• Open mode (Read, Read/Write, VMFA read, Attach point)

• Status info (remote, modified, etc.)

• Position

• Read/write lock

• File type

• Logical device number

4-45 First Edition, Update 1

SUBROUTINES, VOLUME II FINFO$

File information is returned in a structure pointed to by finfo_ptr and
formatted as shown below.

DCL 1 finfo_ BASED,
2 version FIXED BIN,
2 status,

3 modified BIT (1) ,
remote BIT (1) ,
shut_down BIT (1),
no_close BIT (1),
disk_error BIT (1),
sparel EIT (3),

open_jmode,
3 spare2 BIT (3) ,
vmfa_read BIT (1),
spare3 BIT (1),
attach_point BIT (1) ,
write BIT (1),
read BIT (1),

2 file_type FIXED BIN,
2 rwlock FIXED BIN,
2 position FIXED BIN (31),
2 system_name CHAR(32) VAR,
2 Idevno FIXED BIN,
2 packname CHAR(32) VAR;

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries

R-mode: Not available.

Load NPFTNLB.

First Edition, Update 1 4-46

FILE AND DIRECTORY MANIPULATION

FNCHK$

Purpose

Verify a supplied string as a valid filename.

Usage

DCL FNCHK$ ENTRY (FIXED BIN, CHAR(*)VAR) RETURNS (BIT(l));

name_ok = FNCHK$ (key, filename);

Parameters

key

INPUT. Defines restrictions on filename. Keys can be added
together; for example, K$UPRC+K$WLDC. Possible values are:

K$UPRC Mask name to uppercase before checking.

K$WLDC Allow wildcards in name.

K$NULL Allow null names.

K$NUM Allow numeric names (segment directory entry names).

filename

INPUT/OUTPUT. Name to be checked (input only unless K$UPRC is
used; in that case, input/output).

name_ok

RETURNED VALUE. Set to true (1) if the name is valid given the
restrictions of the keys.

Discussion

This function call validates the string passed as a filename. This
means that the string must not contain PRIMOS reserved characters,
lowercase letters, or control characters, must not start with a digit,
and must be between 1 and 32 characters long. The key passed to FNCHK$
can modify these restrictions.

4-47 First Edition, Update 1

SUBROUTINES, VOLUME II FNCHK$

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Upde-.te 1 4-48

FILE AND DIRECTORY MANIPULATION

FORCEW

Purpose

Force PRIMOS to write modified records to disk.

Usage

DCL FORCEW ENTRY (FIXED BIN, FIXED BIN [, FIXED BIN]);

CALL FORCEW (ignored, funit [,code]);

Parameters

ignored

This parameter is not used. Must be 0.

funit

INPUT. The file unit on which a file has been opened.

code

OPTIONAL INPUT. Standard return code that is E$DISK when a disk
error occurred on the file referenced by funit. If code is not
supplied as an argument, then disk errors are not reported.

Discussion

The FORCEW subroutine immediately writes to the disk all modified
records of the file that is currently open on funit. Normally this
action is not needed, since the system automatically updates all
changed file system information to the disk at least once per minute.
Under PRIMOS II, the FORCEW routine has no effect.

FORCEW can be used to obtain the status of disk write operations to a
file. When a disk write error occurs, all units open on the file are
specially marked. When FORCEW is called with the error code parameter
included, if an error condition exists, E$DISK is returned and the
error mark is reset. If the code argument is not supplied, no action
is taken and the error mark is not reset. It can then be tested at a
later time.

4-49 First Edition, Update 1

SUBROUTINES, VOLUME II FORCEW

Note

The error mark is set in all units associated with the file
regardless of which one of them caused the actual error.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

First Edition, Update 1 4-50

FILE AND DIRECTORY MANIPULATION

GPATH$

Purpose

Return the pathname of a specified unit, attach point or segment

Usage

DCL GPATH$ ENTRY (FIXED BIN, FIXED BIN, CHAR (*), FIXED BIN,
FIXED BIN, FIXED BIN);

CALL GPATH$ (key, funit, buffer, bufflen, pathlen, code)/

Parameters

key

INPUT. Specifies the pathname to be returned. Possible values
are:

K$UNIT Pathname of file open on unit specified by funit is to
be returned.

K$CURA Pathname of current attach point is to be returned.

K$HOMA Pathname of home attach point is to be returned.

K$INIA Pathname of initial attach point (origin) is to be
returned.

K$COMO Pathname of Command Output file is to be returned.

K$SEGN Pathname of EPF mapped to funit is to be returned.

funit

INPUT. Specifies file unit number if key is K$UNIT, segment number
if key is K$SEGN; otherwise ignored.

buffer

OUTPUT. The declared name of the varying character string in which
the pathname is to be returned.

4-51 First Edition, Update 1

SUBROUTINES, VOLUME II GPATH$

bufflen

INPUT. Specifies maximum length in characters of the data to be
returned in buffer. If the pathname exceeds bufflen characters,
data in buffer is meaningless and a code of E$BFTS is returned.

pathlen

OUTPUT. Specifies the length in characters of the pathname
returned in buffer.

code

OUTPUT. Standard error code. Possible values are:

E$BKEY A bad key was specified, or segment number was out of
range.

E$BUNT A bad unit number was specified in funit.

E$UNOP Unit specified in funit is closed; no filename is
associated with the unit.

E$NATT Not attached to any directory (keys K$CURA, K$HOMA).

E$BFTS The buffer specified with character length bufflen is
too small to contain full pathname. The buffer
contains no valid data.

E$FNTF No EPF is mapped to segment funit.

Discussion

GPATH$ obtains a fully qualified pathname for an open file unit, or for
current, home, or initial attach points. GPATH$ operates in v-mode
only.

If key is K$SEGN, funit is interpreted as a segment number. In this
case GPATH$ returns the name of the EPF mapped to the segment, if there
is one.

The following are examples of information returned as the result of
using GPATH$. The lowercase names define what information the examples
(in uppercase) actually represent.

<disk_name>MFD
<SPOOLD>MFD

<disk_name>ufd_name
<SPOOLD>SPOOLQ

First Edition, Update 1 4-52

GPATH$ FILE AND DIRECTORY MANIPULATION

<disk_name>ufd_narnel>ufd_name2>file_name
<SALESD>WEST.COAST>YTD.1979>MARCH

<disk_name>ufd_name>segment_directory_name
<OPSYST>PR4.64>VPRMOS

<disk_name>ufd_name>segment_directory_name>entry_num>entry_num
<DBDISK>DICTIONARY>WORDS>22>68

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

4-53 First Edition, Update 1

SUBROUTINES, VOLUME I I

ISREM$

Purpose

Determine whether an open file system object is local or remote.

Usage

DCL ISREM$ ENTRY (FIXED BIN, CHAR (128) VAR, FIXED BIN,
CHAR (32) VAR, FIXED BIN) RETURNS (BIT (1)) ;

is_remote = ISREM$ (key, pathname, unit, sysname, code);

Parameters

key

INPUT. Specify how to search for object. Possible values are:

K$NAME Search for object by pathname.

K$UNIT Search for object by file unit number,

pathname

INPUT. Pathname of object to search for, if key is K$NAME.

unit

INPUT. Unit on which object is open, if key is K$UNIT.

sysname

OUTPUT. Name of system on which object was found, if remotely
attached. Null if object is found on local system.

code

OUTPUT. Standard error code.

is_remote

RETURNED VALUE. Set to TRUE ('l'b) if .the object is remotely
attached, FALSE CO'b) if locally attached.

First Edition, Update 1 4-54

ISREM$ FILE AND DIRECTORY MANIPULATION

Discussion

The ISREM$ subroutine determines the location (local or remote) of a
file system object identified by either its pathname or its file unit
number. An error is returned if the object was not previously opened.

If the object is associated with a remote system, ISREM$ returns a
bit(l) aligned value of 'l7b in is_remote; otherwise it returns a
value of 'O'b. If the object is found to be remote, the system name of
the remote node on which the object exists is also returned.

If K$NAME is specified and the path is not the current attach point,
the current attach point is set to the home directory when the call is
complete.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-55 First Edition, Update 1

SUBROUTINES, VOLUME II

LDISK$

Purpose

Return information on the system's list of logical disks.

Usage

DCL LDISK$ ENTRY (FIXED BIN, CHAR(32) VAR, PTR, FIXED BIN,
FIXED BIN);

CALL LDISK$ (key, system_name, return_ptr, max_entries, code);

Parameters

key

INPUT. Indicates what subset of the disk list is desired.
Possible values are:

K$ALL All disks

K$LOCL Local disks only

K$REM Remote disks only

K$SYS Disks for specified system only

system_name

INPUT. Name of the system whose disks are desired. Ignored unless
key is K$SYS.

return_ptr

INPUT -> OUTPUT. Pointer to return structure (defined below).

max_entries

INPUT. Indicates the maximum number of disk information entries
that the caller's structure can contain. At Rev. 20.2, no more
than 62 disk information entries are returned by this routine.

First Edition, Update 1 4-56

LDISK$ FILE AND DIRECTORY MANIPULATION

code

OUTPUT. Standard error code. Possible values are:

E$BKEY An illegal key value was passed.

E$BVER Invalid version number for disk_list.

E$BPAR max_entries was less than zero.

E$ROOM More than max_entries disks are in the disk table.
This is a warning; data for max_entries disks is
returned.

Discussion

Depending on the key specified, the LDISK$ subroutine returns
information on all disks, local disks only, remote disks only, or disks
from a specified remote system.

Information returned includes name, logical device number, physical
device number, system name if remote, priority ACL status, and
write-protect status.

The structure returned by LDISK$ has the following format:

DCL 1 disk_list,
2 version FIXED BIN,
2 info_count FIXED BIN,
2 info(info_count),
3 priority_acl BIT(l),
3 write_protected BIT(l),
3 rsvd BIT(14),
3 ldevno FIXED BIN,
3 pdevno FIXED BIN,
3 disk_name CHAR(32) VAR,
3 system_name CHAR(32) VAR;

version

Caller-supplied version number of the structure. Must currently be
1.

info_count

Number of entries returned in the info array (described next).
Info_count is always equal to the smallest of the following three
quantities: the number specified in max_entries, the number of
disks on the system, or 62.

4-57 First Edition, Update 1

SUBROUTINES, VOLUME II LDISK$

info.priority_acl

Set if a priority ACL is in effect on this partition. Valid only
for local partitions.

info.write_protected

Set if the disk is write-protected. Valid only for local
partitions.

info.ldevno

Logical device number of the partition,

info.pdevno

Physical device number of the partition.

info.disk_name

Name of the partition. Currently, a partition name is never more
than six characters long, but space for 32 is reserved.

info.system_name

Name of the system on which the disk is physically added. Null for
local disks. Currently, this name is one to six characters long,
but space for 32 is reserved.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 4-58

FILE AND DIRECTORY MANIPULATION

LUDSK$

Purpose

List the disks a given user is using.

Usage

DCL LUDSK$ ENTRY (FIXED BIN, PTR, FIXED BIN, FIXED BIN);

CALL LUDSK$ (user, return_ptr, max_entries, code)/

Parameters

user

INPUT. User number whose disks are to be listed. Use 0 (zero) to
list disks in use by current user.

return_ptr

INPUT -> OUTPUT. Pointer to structure containing the returned disk
list (described below).

max_entries

INPUT. Maximum number of disk entries that the structure can
contain. Maximum that the subroutine can return at Rev. 20.2 is
62.

code

OUTPUT. Standard error code.

Discussion

The LUDSK$ subroutine returns the partition name, the logical device
number, and, if a disk is remotely attached, the system name of each
disk that is currently in use by the user whose user number is
specified in user. If user is specified as zero, information for the
disks in use by the calling user is returned.

4-59 First Edition, Update 1

SUBROUTINES, VOLUME II LUDSK$

The structure pointed to by return_ptr has the following format

DCL 1 rtn_struc BASED,
2 version FIXED BIN,
2 count FIXED BIN,
2 info (max_devs),

3 pack_name CHAR(32) VAR,
3 ldev FIXED BIN,
3 system_name CHAR(32) VAR;

version

Caller-supplied version number of the structure. Must be 2.

count

Number of entries returned. It is the smallest of: the number
specified in max_entries, number of disks on system, or 62.

info.pack_name

Name of the partition represented by this entry. Currently, all
partition names are one to six characters long, but space for 32
characters is reserved.

info.ldev

Logical disk number associated with this partition.

info.system_name

If the disk in this entry is remote, the system name to which it is
physically attached. Currently, system names are one to six
characters long, but space for 32 characters is reserved.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 4-60

FILE AND DIRECTORY MANIPULATION

PAR$RV

Purpose

Return a l o g i c a l va lue i n d i c a t i n g whether a s p e c i f i e d p a r t i t i o n
suppor ts ACL p r o t e c t i o n and q u o t a s .

Usage

DCL PAR$RV ENTRY (CHAR (32) VAR, FIXED BIN) RETURNS (FIXED BIN);

par_rev = PAR$RV (part_name, code) ;

Parameters

part_name

INPUT. Partition name whose revision number is to be returned.
Currently, partition names are one to six characters long, but
space for 32 characters is reserved.

code

OUTPUT. S.tandard error code. Possible values are:

E$FNTF Partition name not found in disk tables

E$BNAM Invalid disk partition name

par_rev

RETURNED VALUE. Partition revision number. Possible values are:

0 ACLs and quotas not supported

1 Converted to allow ACLs and quotas

-1 Error — see error return code (above)

Discussion

The PAR$RV function call returns a "revision stamp" whose value depends
on whether or not the partition in question allows the use of access
control lists (ACLs) for file protection, and quotas for controlling
the amount of space allocated to directories contained in the
partition. Access control subroutines are described in Chapter 2;

4-61 First Edition, Update 1

SUBROUTINES, VOLUME II PAR$RV

quota manipulation subroutines are described later in this chapter.
Further information on the use of ACLs and quotas can be found in the
Prime User's Guide.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 4-62

FILE AND DIRECTORY MANIPULATION

PRWF$$

Purpose

Read, write, position, or truncate a file.

Usage

DCL PRWF$$ ENTRY (FIXED BIN, FIXED BIN, PTR OPTIONS (SHORT), FIXED BIN,
FIXED BIN (31), FIXED BIN, FIXED BIN);

CALL PRWF$$ (rwkey+poskey+modekey, funit, loc(buf), nhw, pos,
rnhw, code);

Parameters

rwkey

INPUT. Indicates the action to be taken

K$READ

Possible values are:

K$WRIT

K$POSN

K$TRNC

K$RPOS

Read nhw halfwords from the object open on funit into
buf.

Write nhw halfwords from buf to the object open on
funit.

Set the current position to the value in pos.

Truncate the file open on funit at the
position.

current

Return in pos the current position as a number of
halfwords from the beginning of the object.

poskey

INPUT. Key indicating the positioning to be performed (if omitted,
implies K$PRER). Possible values are the following:

K$PRER Move the file pointer of funit the number of halfwords
specified by pos relative to the current position
before performing the action specified by rwkey.

K$POSR Move the file pointer of funit by the number of
halfwords specified by pos relative to the position
resulting from the action specified by rwkey.

4-63 First Edition, Update 1

SUBROUTINES, VOLUME II PRWF$$

K$PREA Move the file pointer of funit to the absolute
position specified by pos before performing the action
specified by rwkey.

K$POSA Move the file pointer of funit to the absolute
position specified by pos after performing the action
specified by rwkey.

modekey

INPUT. Key that can be used to transfer all or a convenient (to
the system) number of halfwords (if omitted, read or write nhw) .
Possible values are:

K$CONV Read or write a convenient number of halfwords
the number specified by the parameter nhw).

(up to

K$FRCW Perform a write to disk from buffer
next instruction in the program.

before executing

funit

INPUT. A file unit number (1 to 15 for PRIMOS II, 1 to 327 67 for
PRIMOS) on which a file has been opened by a call to SRCH$$ or by a
PRIMOS command. PRWF$$ actions are performed on this file unit.

loc(buf)

INPUT/OUTPUT. Pointer to the data buffer to be used for reading or
writing. If a buffer is not needed for a given PRWF$$ call, it can
be specified as loc(O) in the CALL statement.

nhw

pos

INPUT. The number of halfwords to be read or written (mode=0) or
the maximum number of halfwords to be transferred (mode=K$CONV) .
nhw must be between 0 and 65535.

INPUT. An integer specifying the relative or absolute positioning
value depending on the value of poskey.

rnhw

OUTPUT. A 16-bit unsigned integer set to the number of halfwords
actually transferred when rwkey = K$READ or K$WRIT. Other keys
leave rnhw unmodified.

code

OUTPUT. Standard e r r o r code. YV>e C d ^ £$Goi? ĉ Ul be re-fn ri-ec/

"*^

F i r s t E d i t i o n , Update 1 4-64

PRWF$$ FILE AND DIRECTORY MANIPULATION

Discussion

pos is always a 32-bit integer. All calls to PRWF$$ must specify pos
even if no positioning is requested. An INTEGER*4 0 can be generated
by specifying 000000 or INTL(0) in FTN, 0L in PMA or Pascal.

poskey is observed for all values of rwkey except K$RPOS, for which it
is ignored (the file position is never changed).

If rwkey = K$POSN, nhw and rnhw are ignored, and no data is
transferred.

A call to read or write nhw halfwords causes that number of halfwords
to be transferred to or from the file, starting at the file pointer in
the file. Following a call to transfer information, the file pointer
points to the end of the transferred data in the file. Using poskey of
K$PREA or K$POSA, the user can explicitly move the file pointer to pos
before or after the data transfer operation. Using a poskey of K$PRER
or K$POSR, the user can move the file pointer backward pos halfwords
from the current position if pos is negative, or forward pos halfwords
if pos is positive. Positioning takes place before or after the data
transfer, depending on the key. If nhw is 0 in any of the calls to
PRWF$$, no data transfer takes place, and PRWF$$ performs a pointer
position operation.

The modekey subkey of PRWF$$ is most frequently used to transfer a
specific number of halfwords on a call to PRWF$$. In these cases, the
modekey is 0 and is normally omitted in PRWF$$ calls. In some cases,
such as in a program to copy a file from one file directory to another,
a buffer of a certain size is set aside in memory to hold information,
and the file is transferred, one buffer-full at a time. In this case,
the user normally doesn't care how many halfwords are transferred at
each call to PRWF$$, so long as the number of halfwords is less than
the size of the buffer set aside in memory.

Since the user would generally prefer to run a program as fast as
possible, the K$CONV subkey is used to transfer nhw or fewer halfwords
in the call to PRWF$$. The number of halfwords transferred is a number
convenient to the system, and therefore speeds up program execution.
The number of halfwords actually transferred is set in rnhw. For
examples of PRWF$$ used in a program, refer to the file-manipulation
examples in Volume I of this series.

The subkey K$FRCW guarantees that PRWF$$ does not return until the disk
record(s) involved are written to disk. The write to disk is performed
before executing the next instruction in the program. Since the K$FRCW
defeats the disk buffering mechanism, it should be used with care; one
of its effects is to increase the amount of disk I/O. It should be
used only when it is necessary to know that data has been physically
written onto a disk (as when implementing error recovery schemes).

When using the K$FRCW key, the programmer is responsible for ensuring
that no other concurrent processes (users) are executing a PRWF$$ call.
The file can be open for use by several processes. The forced write

4-65 First Edition, Update 1

SUBROUTINES, VOLUME II PRWF$$

applies only to the data written by the process performing the
operation. See an example of the use of the key K$FRCW later in this
chapter.

On a PRWF$$ BEGINNING OF FILE error or END OF FILE error, the parameter
rnhw is set to the number of halfwords actually transferred.

On a DISK FULL or QUOTA EXCEEDED error, the file pointer is set to the
value it had at the beginning of the call to PRWF$$. The user can,
therefore, delete another file and restart the program (by typing START
after using the DELETE command).

During the positioning operation of PRWF$$, PRIMOS maintains a file
pointer for every open file. When a file is opened by a call to
SRCH$$, the file pointer is set in such a manner that the next halfword
that is read is the first one of the file. The file pointer value is
0, for the beginning of file. If the user calls PRWF$$ to read 490
halfwords, and does no positioning at the end of the read operation,
the file pointer is set to 490.

Note

In V-mode, PRWF$$ transfers words only into and out of the same
segment as that containing the beginning of the buffer.
Reading across a segment boundary causes a wraparound, and
reads into the beginning of the segment. Wraparound can also
occur when writing from the buffer.

The following examples show some uses of the PRWF$$ subroutine call,

Example 1: Read the next 79 halfwords from the file open on unit 1;

CALL PRWF$$ (K$READ, 1, LOC(BUFFER), 79, 000000, NMREAD,
CODE)

Example 2; Add 1024 halfwords to the end of the file open on UNIT
(10000000 is just a very large number to get to the end of the file;
NMW holds the number of halfwords actually written):

CALL PRWF$$ (K$POSN+K$PREA, UNIT, LOC(0), 0, 10000000, 0,
CODE)

CALL PRWF$$ (K$WRIT, UNIT, LOC(BFR), 1024, 000000, NMW,
CODE)

First Edition, Update 1 4-66

PRWF$$ FILE AND DIRECTORY MANIPULATION

Example 3: See what position is on file unit 15 (INT4 is INTEGER*4):

CALL PRWF$$ <K$RPOS, 15, LOC(O), 0, INT4, 0, CODE)

Example 4: Truncate file ten halfwords beyond the position returned by
the above call:

CALL PRWF$$ (K$TRNC+K$PREA, 15, LOC(0), 0, INT4+10, 0, CODE)

Example 5: Position the file open on unit number UNIT to the tenth
halfword used in the file; then write the first ten halfwords of ARRAY
to it:

INTEGER*2 ARRAY(40), CODE,UNIT,RET
$INSERT SYSCOM>KEYS.F

CALL PRWF$$(K$WRIT+K$FRCW+K$PREA, UNIT, LOC(ARRAY),
X 10,INTL(10),RET, CODE)
IF (CODE .NE. 0) GOTO error_processor

The above FORTRAN call causes the file that is open on unit number UNIT
to be positioned to the tenth halfword in the file, and the first ten
halfwords of ARRAY are written to it. The next instruction in the
user's program is not executed until the data has actually been written
to disk. If an error is encountered while writing to disk, the error
code E$DISK (disk I/O error) is returned. If more than one concurrent
user of the disk record is detected, the error code E$FIUS (file in
use) is returned. In this case, the write is not lost, but is not
performed immediately.

Example 6: Read and write SAM and DAM files using PRWF$$:

/A**/

/* Copy SAM and DAM files */

cp$$fl:
proc(sunit, tunit, err_info, code);

% include 'syscom>keys.pi1';
%include 'syscom>errd.pll';

%replace maxsiz by 1024/ /* maximum record size in words */

4-67 First Edition, Update 1

SUBROUTINES, VOLUME II PRWF$$

del

del
del
del
del
del
del
del
del
del

sunit
tunit
err_info

code
recbuf(maxsiz)
words_read
words_written
eof
recbuf_ptr
addr
errpr$
user_proc
prwf$$

fixed binary(15)
fixed binary(15)
fixed binary(15)

/*
/*
/*
/*
/*
/*
/*
/*
/*

unit of open source file
unit of target file
if code A= 0 indicates
file that caused error:
1 = source, 2 = target
standard error code
I/O buffer
actual words prwf$$
actual words prwf$$

read
wrote

*/
*/
*/
*/
*/
*/
*/
*/
* /

fixed binary(15)
fixed binary(15)
fixed binary(15)
fixed binary(15)
bit(l);
pointer options(short);
builtin;
entry(bin, bin, char(*), bin, char(*), bin);
entry;
entry (fixed binary(15),

/* keys (rwkey+poskey+mode)
fixed binary(15), /* unit to perform action on
pointer options(short),

/* address of data buffer
words to read or write
position value
actual words read or wrtn*/
standard error code */

fixed binary(15),
fixed binary(31),
fixed binary(15),
fixed binary(15))

/*
/*
/*
/*

*/
*/

*/
*/
*/

err_info =0/
code = 0;
recbuf_ptr = addr(recbuf);
eof = 'O'b;

do while (Aeof);
call prwf$$(k$read, sunit, recbuf_ptr, maxsiz, 0, words_read,

code);
if code A= 0

then if code A= e$eof
then do;

err_info = 1;
return;
end;

else eof = 'l'b;
a:
call prwf$$(k$writ/tunit,recbuf_ptr,words_read,0,words_written,

code);

First Edition, Update 1 4-68

PRWF$$ FILE AND DIRECTORY MANIPULATION

if code A= 0
then if code = e$dkfl

then do;
call errpr$(k$irtn, code, " , 0, 'cp$$fl', 6);
call user_proc; /* Wait for response */
go to a;
end;

else do;
err_info = 2;
return;
end;

end;
return;
end cp$$fl;

More examples of the use of PRWF$$ Are given with the file-system
examples in Volume I.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries:

R-mode: No special action.

Load NPFTNLB,

4-69 First Edition, Update 1

SUBROUTINES, VOLUME II

Q$READ ^

Purpose

Return directory quota and disk record usage information.

Usage

DCL Q$READ ENTRY (CHAR(128)VAR, (8) FIXED BIN (31), FIXED BIN,
FIXED BIN, FIXED BIN)/

CALL Q$READ (pathname, quota_info, max_entries, type, code);

Parameters

pathname

INPUT. Name of the directory whose quota information is to be
read. List access must be available either on the directory itself
or on its parent. If pathname is null, information for the current
directory is returned.

quota_info

OUTPUT. Structure in which quota information is returned. Format
is described below.

max_entries

INPUT. Number of entries in quota_info. Maximum is 6 for
Rev. 20.2.

type

OUTPUT. Type of directory (input):

0 Quota Directory

1 Non-quota Directory

code

OUTPUT. Standard error code:

E$NINF Insufficient access to read, quota.

First Edition, Update 1 4-70

Q$READ FILE AND DIRECTORY MANIPULATION

0£* Discussion

Quota and disk usage accounting concepts are explained in the System
Administrator's Guide.

The Q$READ subroutine returns a maximum of six items of information.
If more than six are requested, six are returned. A user program can
specify, in max_entrieS/ a smaller number of items; if a value n
(1 < n < 6) is specified, the first n items of the structure are
returned. The contents of the two reserved entries are undefined at
Rev. 20.2. The user declares the structure as follows:

DCL 1 quota_info,
2 record_size FIXED BIN (31),
2 dir_used FIXED BIN (31),
2 max_quota FIXED BIN (31),
2 quota_used FIXED BIN (31),
2 rec_time_product FIXED BIN (31),
2 dtm FIXED BIN (31)
2 reserved_l FIXED BIN (31),
2 reserved_2 FIXED BIN (31);

record_size

Record size in halfwords: 440 or 1024.

dir_used

Records used in this directory.

max_quota

Quota for this directory.

quota_used

Records used in subtree of this directory.

rec_time_product

Cumulative record-minutes for this directory.

dtm

Date/time that rec_time_product was last updated, in standard
File-system Date Format (see Appendix C of Volume III for more
information about this format).

When this call is invoked on a nonquota directory, type has a returned
value of 1, and max_quota, rec_time_product, and dtm have returned
values of 0. The value returned in dir_used indicates the sum of the

4-71 First Edition, Update 1

SUBROUTINES, VOLUME II Q$READ

records used in the files in the directory and the records used by the
directory itself. quota_used indicates the sum of the records used for
all files and subdirectories of this directory.

Quota directories return a type value of 0, and all requested quota
information.

The system keeps an accounting usage meter in each quota directory.
This meter is a summation of the time intervals that each disk record
has been in use.

The accounting meter is a counter that acts as an unsigned 32-bit
integer, which is to say that it counts to all ones (some 4.3 billion)
and then goes to 0. The system also indicates when the last update
occurred.

The USAGE is computed in record-minutes, computed according to the
formula:

TIME = (Current date/time) - (Date/time quota last modified)

USAGE - USAGE + (quota_used) * TIME

An accounting program would use a similar algorithm to calculate the
current record-time product.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 4-72

FILE AND DIRECTORY MANIPULATION

Q$SET

Purpose

Set a quota on a subdirectory in the current directory.

Usage

DCL Q$SET ENTRY (FIXED BIN, CHAR(128)VAR, FIXED BIN (31),
FIXED BIN);

CALL Q$SET (key, pathnam, max_quota, code);

Parameters

key

INPUT. Must be K$SMAX (set maximum quota).

pathname

INPUT. An array containing the name of the subdirectory to receive
the quota.

max_quota

INPUT. Maximum quota for the directory and its subtree.

code

OUTPUT. Standard return code. Possible values are:

E$NRIT Insufficient access to set quota.

E$IMFD Quota not permitted on MFD.

E$QEXC Used records greater than new maximum (WARNING).

E$FIUS Directory in use during attempt to convert from
nonquota to quota.

4-73 First Edition, Update 1

SUBROUTINES, VOLUME II Q$SET

Discussion

If the directory specified in pathname is not already a quota
directory, it is converted to a quota directory.

The user must have Protect access to the directory's parent.

If max_quota is specified as 0, any quota already existing on the
directory is removed, and the directory becomes a non-quota directory.
If max_quota is assigned a value that is less than the number of
records already used in this directory, a warning is returned, but the
quota is set to the new value. Under these conditions, the user will
receive a MAXIMUM QUOTA EXCEEDED message whevever an attempt is made to
add records to a file in the directory. The number of records used in
the directory must be reduced (normally by deleting old or unneeded
files) to less than the value of the new quota.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 4-74

FILE AND DIRECTORY MANIPULATION

RDEN$$

Purpose

Position in or read from a directory.

This subroutine is considered obsolete, and its use in new programming
is discouraged. Use DIR$RD or ENT$RD instead. Users maintaining
existing programs that call RDEN$$ can refer to Appendix A for a
complete description of the subroutine.

4-75 First Edition, Update 1

SUBROUTINES, VOLUME II

RDLIN$

Purpose

Read a line of characters from an ASCII disk file.

Usage

DCL RDLIN$ ENTRY (FIXED BIN, CHAR(*), FIXED BIN, FIXED BIN);

CALL RDLIN$ (funit, buffer, count, code);

Parameters

funit

INPUT. File unit on which the file to be read is open.

buffer

INPUT. Name of a varying string of count halfwords in which the
line of information from the disk file is to be read.

count

INPUT. Size of buffer in halfwords,

code

OUTPUT. Standard error code.

Discussion

A line of characters from the file open on funit is read into the area
specifiec by buffer, two characters per halfword. Lines on the disk
are separated by the newline character. For compressed files, when a
control character DCl (221 octal) followed by a number is read from the
disk, the DCl is suppressed and the number is replaced by that many
spaces in the buffer.

If the line being read is less than twice the. count characters, the
remaining characters in the buffer are filled with spaces. If it is
greater than twice the count characters, only twice the count
characters fill the buffer and the remaining characters on the disk
file line are lost. The newline character itself never appears as part
of the line read into the buffer.

First Edition, Update 1 4-76

RDLIN$ FILE AND DIRECTORY MANIPULATION

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

4-77 First Edition, Update 1

SUBROUTINES, VOLUME II

SATR$$

Purpose

Set or modify an object's attributes in its directory entry.

Usage

DCL SATR$$ ENTRY (FIXED BIN, CHAR (32), FIXED BIN,
(2) FIXED BIN, FIXED BIN);

CALL SATR$$ (key, o b j e c t , namlen, a t t r i b u t e s , code) ;

Paramete rs

Jcey

INPUT Specifies the action to take. Possible values are:

K$PROT

K$DTIM

K$DTB

K$DTC

K$DTA

K$DMPB

Set password protection attributes from the first
halfword of the attributes array. The second halfword
of attributes is ignored for pre-Rev 19.0 partitions
and must be 0 for Rev 19.0 and newer partitions.

Set date/time modified
attributes.

from both halfwords of

Set date/time backed up from both halfwords
attributes.

of

Set date/time
attributes.

created from both halfwords of

Set date/time last accessed from both halfwords of
attributes.

Set the dumped bit. This bit is set by the utility
program that takes backup dumps of modified files, and
is reset by the operating system whenever the file is
modified.

Caution .

Users should use the K$DMPB key with care,
since indiscriminate resetting of the dumped
bit can result in failure to back up the
affected file.

First Edition, Update 1 4-78

SATR$$ FILE AND DIRECTORY MANIPULATION

K$RWLK Set the read/write lock on a per-file basis. Bits 15
and 16 of the first halfword of attributes are set by
the user for specific lock values.

K$SDL Set the delete switch (for use with ACLs). If the
first halfword of attributes is not 0, the delete
switch is set- If it is 0, the switch is cleared.

K$LTYP Set the logical type field in the file entry to the
value in the first word of attributes. This field
should never be set by user software. It is for Prime
internal use only.

K$TRUN Set the "truncated by FIX^DISK" bit from the value in
bit 1 of the first halfword of attributes. This field
should never be set by user software. It is for Prime
internal use only.

object

INPUT. Name of the object whose attributes are to be modified.
The current directory is searched for object.

namlen

INPUT. Length in characters of object.

attributes

INPUT. Field containing the attributes; one or two halfwords,
depending on key:

K$PROT A 16-bit (one-halfword) structure defining the
password protection rights for the object, as defined
below.

K$DTxx A 32-bit (two-halfword) structure containing the
date/time to set, in standard FS format.

K$DMPB Ignored.

K$RWLK One of the following sub-keys:

K$DFLT Use system default value

K$EXCL Unlimited readers OR one writer

K$UPDT Unlimited readers AND one writer

K$NONE Unlimited readers and writers

K$SDL A 16-bit (one-halfword) quantity. If nonzero, the
delete-protect switch is set on. If zero, it is set
off.

4-79 First Edition, Update 1

SUBROUTINES, VOLUME II SATR$$

code

OUTPUT. Standard error code. Possible values are:

E$BKEY An invalid key value was passed.

Object name is invalid.

namlen is less than 1 or greater than 32

The current attach point is invalid.

E$BNAM

E$BPAR

E$NATT

E$NRIT Protect access (Delete access for K$SDL) is missing
from the current directory.

E$WTPR The disk is write-protected.

E$NINF An error occurred during search of the directory, and
List access was not available.

E$FNTF The object does not exist.

E$IACL The object is an access category, and a key other than
K$DTIM was used.

E$DIRE The object is a directory, and the K$RWLK key was
used.

E$ATNS The attribute is not supported in the directory, which
is of a pre-Rev. 20.2 format.

Discussion

The attributes that can be set include:

• Password protection

• Date/time modified, backed up, created, or accessed

• Dumped bit

• Read/write lock

• Delete-protect switch

First Edition, Update 1 4-80

SATR$$ FILE AND DIRECTORY MANIPULATION

The password protection structure is as follows

DCL 1 pw_protection,
2 owner_rights,
3 ignored BIT(5),
3 delete BIT(l),
3 write BIT(l),
3 read BIT(l),

2 non_owner_rights,
3 ignored BIT(5),
3 delete BIT(l),
3 write BIT(l),
3 read BIT(l) ;

The standard FS-format date is structured as described in Appendix C of
Volume III.

Note

SATR$$ does not check the validity of the supplied date and
time. Users must assure that the date/time passed is legal.

The date/time-modified field and the dumped bit are changed by PRIMOS.
When PRIMOS changes these fields for a file, the corresponding fields
of the file's parent directory are not changed. However, when the name
or protection attributes of the file are changed, the date/
time-modified and the dumped bit of the parent directory are updated,
and the dumped bit for the file is reset.

Since a call to SATR$$ modifies the directory, the date/time modified
and date/time last accessed of the directory itself are updated.

The PRIMOS file system supports read/write locking (concurrency) on a
per-file basis. The read/write lock is used to regulate concurrent
access to the file, and was formerly alterable only on a system-wide
basis. The read/write lock bits are bits 5 and 6 of file_info, as
described for the DIR$LS subroutine, earlier in this chapter.

4-81 First Edition, Update 1

SUBROUTINES, VOLUME II SATR$$

The meaning of the lock values is:

Value

0

1

2

3

Bits 5,6

0,0

0,1

1/0

1,1

Meaning

Use system-wide RWLOCK to regulate
concurrent access.

Allow arbitrary readers or one writer.

Allow arbitrary readers and one writer,

Allow arbitrary readers and arbitrary
writers.

Files are created with read/write lock bits set to 00.

User directories do not have user-alterable read/write locks, although
segment directories do. Files in a segment directory have the per-file
read/write lock of the segment directory.

The per-file read/write lock value can be read by any of the directory
reading subroutines: DIRLS, DIRRD, DIR$SE or ENT$RD. It is set by a
SATR$$ call with a key of K$RWLK. The desired value is supplied in
bits 15 and 16 of the first halfword of attributes, the remaining bits
of which must be 0. On pre-Rev. 19.0 partitions, the SATR$$ call fails
with an error code of E$OLDP. Owner rights to the containing directory
are required, otherwise the call fails with an error code of E$NRIT.
An attempt to set the lock value of a directory fails with an error
code of E$DIRE. If the SATR$$ call requests a lock value which is more
restrictive than the current usage of the file, the file's lock value
is changed and current users of the file are unaffected, but any
subsequent open requests are governed by the new lock value.

The commands MAGSAV and MAGRST properly save and restore the per-file
read/write lock along with the file itself. Existing backup tapes
without saved read/write locks on them are restored with read/write
locks of 0, so the system-wide RWLOCK setting continues to control
access to such files.

The COPY command with the -RWLOCK option copies the per-file read/write
lock setting along with the file.

OWner rights are required on the directory containing the entry to be
modified, except with K$SDL, which requires delete access.

An attempt to set the date/time-modified, the dumped bit, or the
read/write lock on a pre-Rev. 19.0 partition results in an E$OLDP
error.

First Edition, Update 1 4-82

SATR$$ FILE AND DIRECTORY MANIPULATION

The following examples illustrate some uses of the SATR$$ subroutine:

Example 1: Set default protection attributes on MYFILE:

ARRAY(1)=:3400 /* OWNER=7, NON-OWNER=0

ARRAY(2)=0 /* SECOND WORD MUST BE 0

CALL SATR$$ <K$PROT, 'MYFILE', 6, ARRAY(l), CODE)

Example 2: Set both owner and nonowner attributes to read-only (note
carefully the bit positioning in two-halfword octal constant):

CALL SATR$$ (K$PROT, 'NO-YOU-DON"T' , 12, 1100200000, CODE)

Example 3: Set date/time modified from directory entry read into ENTRY
by RDEN$$:

CALL SATR$$ (K$DTIM, FILNAM, 6, ENTRY(21), CODE)

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

4-83 First Edition, Update 1

SUBROUTINES, VOLUME II

SGD$DL

Purpose

Delete a segment directory entry.

Usage

DCL SGD$DL ENTRY (FIXED BIN, FIXED BIN) ;

CALL SGD$DL (segdir_unit, code);

Parameters

segdir_unit

INPUT. Unit on which the segment directory is open.

code

OUTPUT. Standard error code. Possible values are:

E$BUNT seqdir_unit contains an invalid value.

E$SUNO Unit is not open, or is not open for writing.

E$NTSD Object open on segdir_unit is not a segment directory.

E$FNTS Entry at the current position does not exist, or the
segment directory is positioned past the end.

Discussion

SGD$DL is used to delete an entry from a segment directory. The
segment directory must have been previously opened for writing (by a
call such as SRCH$$), and must be positioned (by an SGDR$$ call) at the
entry to be deleted.

•
Delete access is required to the segment directory containing the
member to be deleted. The date/time modified and date/time accessed
fields are updated in the segment directory.

First Edition, Update 1 4-84

SGD$DL FILE AND DIRECTORY MANIPULATION

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-85 First Edition, Update 1

SUBROUTINES, VOLUME II

I SGD$EX

Purpose

Finds out whether there is a valid entry at the current position within
the segment directory open on a specified unit.

Usage

DCL SGD$EX ENTRY (FIXED BIN, FIXED BIN, FIXED BIN);

CALL SGD$EX (unit, type, code);

Parameters

unit

INPUT. Specifies the unit number on which the segment directory is
open.

type

OUTPUT. Type of file detected (SAM or DAM)

code

OUTPUT. Standard error code,

Discussion

SGD$EX attempts to read the entry at the current position. If there is
no valid SEGDIR entry at that position, SGD$EX returns the error E$FNTS
(NOT FOUND IN SEGMENT DIRECTORY).

First Edition, Update 1 4-86

FILE AND DIRECTORY MANIPULATION

Loading and:Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

/$5**V

4-87 First Edition, Update 1

SUBROUTINES, VOLUME II

SGD$OP

Purpose

Open a segment directory entry.

Usage

DCL SGD$OP ENTRY (FIXED BIN, FIXED BIN, FIXED BIN, FIXED BIN,
FIXED BIN, FIXED BIN) RETURNS (FIXED BIN);

open_unit = SGD$OP (key, seg_unit, file__unit, file_type,
new_type, code);

Parameters

key

INPUT. Mode in which object is to be opened. Possible values are:

K$READ Open object for reading (input only).

K$WRIT Open object for writing (output only).

K$RDWR Open object for reading and writing (input/output).

K$VMR Open object for virtual memory file access (VMFA)
reading. Used only before calling one of the EPF
subroutines for initializing or executing an EPF.

seg_unit

INPUT. File unit on which the segment directory containing the
entry is opened. The segment directory must have been opened (by a
call to SRCH$$, for example) before the call to SGD$OP can be
issued.

file_unit

INPUT. File unit on which the entry is to be opened. Supply
either a specific file unit number between 1 and 12 6, or the value
-10000 to cause PRIMOS to select one. The selected unit number is
returned in open_unit.

First Edition, Update 1 4-88

SGD$OP FILE AND DIRECTORY MANIPULATION

file_type

OUTPUT. Type of file opened. Possible values are:

0 Sequential access (SAM) file

1 Direct access (DAM) file

2 Sequential access segment directory (SEGSAM)

3 Direct access segment directory (SEGDAM)

7 Contiguous access (CAM) file

new_type

INPUT. Type of object to be created if it does not exist (key must
be KSWRIT or KSRDWR). Possible values are:

K$NSAM Create a sequential access file.

K$NDAM Create a direct access file.

K$NSGS Create a sequential access segment directory.

K$NSGD Create a direct access segment directory.

K$NCAM Create a contiguous access file.

code

OUTPUT. Standard error code.

open_unit

RETURNED VALUE. File unit number of the newly opened entry.

Discussion

A full description of the SGD$OP subroutine is given in the Advanced
Programmer' s Guide.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries

R-mode: Not available.

4-89

Load NPFTNLB,

First Edition, Update 1

SUBROUTINES, VOLUME I I

SGDR$$

Purpose

Position in, read an entry in, or modify the size of a segment
directory.

Usage

DCL SGDR$$ ENTRY (FIXED BIN, FIXED BIN, FIXED BIN, FIXED BIN,
FIXED BIN);

CALL SGDR$$ (key, funit, entrya, entryb, code);

Parameters

key

INPUT. Key specifying the action to be performed. Possible values
are:

K$SPOS Move the file pointer of funit to the position given
by the value of entrya. The directory must be open
for reading or for both reading and writing. One of
the following values is returned in entryb:

1 If the position given by entrya exists and
contains a file.

0 If the position given by entrya exists but
does not contain a file.

-1 If the position given by entrya is beyond the
end of the directory (EOD).

If EOD is reached on K$SPOS, the file pointer is left
at EOD.

K$FULL Move the file pointer of funit to the position given
by the value of entrya. One of the following values
is returned in entryb:

The position given by entrya if this position is
full.

The position of the next full entry if the
position at entrya is empty.

First Edition, Update 1 4-90

SGDR$$ FILE AND DIRECTORY MANIPULATION

K$FREE

K$GOND

K$GPOS

K$MSIZ

K$MVNT

funit

-1 if the position at entrya is
are no full positions beyond it
is left set at EOD.

empty and there
The file pointer

Same as for K$FULL, but find an entry that
contain a file.

does not

Move the file pointer of funit to the end-of-directory
position and return in entryb the file entry number of
the end of the directory.

Return in entryb the file entry number
pointed to by the file pointer of funit.

currently

entrya Make the segment directory open on funit
entries long. The file pointer is moved to the end of
directory. The directory must be open for both
reading and writing.

Move the entry pointed to by entrya to the entry
pointed to by entryb. The entrya entry is replaced
with a null pointer. An error is returned by K$MVNT
if there is no file at entrya, if there is already a
file at entryb, or if either entrya or entryb is at or
beyond the end of the directory. The file pointer is
left at an undefined position. The directory must be
open for both reading and writing.

INPUT. The file unit on which the segment directory is open.

entrya

INPUT. Entry number in the directory, to be interpreted according
to value of key.

entryb

INPUT/OUTPUT. Integer set or used according to value of key.

code

OUTPUT. Standard error code. Value returned depends on value of
key.

Discussion

When SGDR$$ is called, the segment directory must not be opened for
write-only access. Whether read-only or read and write access is
required depends on the action to be performed, as determined by the
value of key.

4-91 First Edition, Update 1

SUBROUTINES, VOLUME II SGDR$$

A K$MSIZ call with entrya equal to 0 causes the directory to have no
entries. If the value of entrya is such that it truncates the
directory, all entries including and beyond the one pointed to by
entrya must be null. See SRCH$$ for more segment directory
information.

Note

When a directory is read sequentially using the K$POS key with
entrya values of n, n+1, n+2,..., the end of the directory is
indicated by returning a -1 in entryb, rather than by returning
the E$EOF error code. E$EOF is returned when entrya reaches a
value greater than the value that returned -1 in entryb.

The following examples illustrate some uses of the SGDR$$ call

Example 1; Read sequentially through the segment directory open on 6

CURP0S=-1
100 CURPOS=CURPOS+l

CALL SGDR$$ (K$SPOS, 6, CURPOS, RETVAL, CODE)
IF (RETVAL) 200,300,400 /* BOTTOM, NO FILE, IS FILE

Example 2: Make directory open on 2 as big as directory open on 1:

CALL SGDR$$ (K$G0ND, 1, 0, SIZE, CODE)
IF (CODE.NE.0) GOTO <error handler>
CALL SGDR$$ (K$MSIZ, 2, SIZE, 0, CODE)

Example 3: Read and write segment directories using SGDR$$

/•A***/

cp$$sd:
proc(sunit, tunit, err_info, code) recursive;

%include 'syscom>keys.pll';
%include 'syscom>errd.pll' ;

del sunit fixed bin,
tunit fixed bin,
err_info fixed bin,
code fixed bin;

del (entrya,
entryb,
entry_no) fixed bin;

First Edition, Update 1 4-92

SGDR$$ FILE AND DIRECTORY MANIPULATION

del (sfunit,
tfunit) fixed bin;

del (newfil,
trash,
tcode,
rtnval,
type) fixed bin;

del errpr$ entry(bin, bin, char(*), bin, char(*), bin);
del srch$$ entry(bin, bin, bin, bin, bin, bin);
del cp$$fl entry(bin, bin, bin, bin) ;

/* cp$$fl is defined in example 6 for PRWF */
del sgdr$$ entry (fixed bin, /* read segdir entries */

/* first is key */
fixed bin, /* unit on which segdir is open */
fixed bin, /* entrya */
fixed bin, /* entryb */
fixed bin); /* standard error code */

set_target_size: /* make target segdir same number
/* of entries as source */

err_info = 0 ;
call sgdr$$(k$gond, sunit, entrya, entry_no, code);
if code A= 0

then go to err_rtn_l;
call sgdr$$(k$msiz, tunit, entry_no, entryb, code);
if code A= 0

then go to err_rtn_2;

main_loop:

do entry_no = 0 repeat (entry_no + 1) ;

/* position segdirs
call sgdr$$(k$spos, sunit, entry_no, rtnval, code);
if code A= 0

then go to err_rtn_l;
if rtnval < 0

then return; /* end of file
call sgdr$$(k$spos, tunit, entry_no, entryb, code);
if code A= 0

then go to err_rtn_2;
if entryb < 0

then do;
call errpr$(k$irtn, e$null, 'Unrecoverable

error', 19, 'cp$$sd', 5);
stop;
end;

if rtnval = 1
then do;

*/

4-93 First Edition, Update 1

SUBROUTINES, VOLUME II SGDR$$

/* found a nonnull entry in source/ */
/* open it and same entry in target*/

call srch$$(k$read + k$iseg + k$getu, sunit, 0,
sfunit, type, code);

if code A= 0
then go to err_rtn_l;

newfil = k$nsam;
if type = 1

then newfil = k$ndam;
if type = 2

then newfil = k$nsgs;
if type = 3

then newfil = k$nsgd;
call srch$$(k$rdwr+k$iseg+k$getu+newfil, tunit, 0,

tfunit, trash, code)/
if code A= 0

then do;
call srch$$(k$clos + k$iseg, sunit, 0,

sfunit, trash, tcode);
go to err_rtn_2;
end;

/* do copies */

if type < 2
then call cp$$fl(sfunit, tfunit, err_info, code);
else call cp$$sd(sfunit, tfunit, err_info, code);

/* close the entries just copied */

call srch$$(k$clos + k$iseg, sunit, 0, sfunit, trash,
tcode);

call srch$$(k$clos + k$iseg, tunit, 0, tfunit, trash,
tcode);

if code A= 0
then return;

end;
end;

err_rtn_l:
err_info = 1;
return;

err_rtn_2:
err_info = 2;
return;
end cp$$sd;

First Edition, Update 1 4-94

SGDR$$ FILE AND DIRECTORY MANIPULATION

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

4-95 First Edition, Update 1

SUBROUTINES, VOLUME I I

SIZE$

Purpose

Return the size of a file system entry.

Usage

DCL SIZE$ ENTRY (CHAR(128) VAR, FIXED BIN(15), FIXED BIN(31),
PTR, FIXED BIN(15), FIXED BIN(15));

CALL SIZE$ (pathname, expected__version, rec_size,
buf_ptr, buf_size, code);

Parameters

pathname

INPUT. Pathname of the entry whose size is desired,

expected_version

INPUT. Version of output structure expected by caller. Must be 1.

rec_size

INPUT. Record size in halfwords. This is used for calculating the
file size in records. It should be set to 1 if the output units
desired are in halfwords.

buf_ptr

INPUT -> OUTPUT. Pointer to the caller's buffer.

buf_size

INPUT. Size of caller's buffer in halfwords.

First Edition, Update 1 4-96

SIZE$ FILE AND DIRECTORY MANIPULATION

code

OUTPUT. Standard error code. Possible values are:

E$BFTS Buffer too small (returned only if buf_size < 1)

E$FNTF Entry does not exist.

E$NRIT Insufficient access rights.

E$BVER Invalid version number.

E$BPAR Bad parameter (rec_size < 1).

Discussion

^0S1\

The SIZE$ subroutine returns the size (in halfwords) and type of the
object specified by pathname. If the object is one that contains
subentries (a file directory, a segment directory, or an access
category), the number of subentries is also returned. For directories,
SIZE$ indicates whether or not the object is an ACL directory.

The caller must have Read access if the object is a file or a segment
directory, or List access if it is a file directory. List and Use
rights to the parent directory are also required.

SIZE$ does not alter the date/time accessed (DTA) field of the
specified object. It does, however, modify the DTA of the parent
directory.

If the buffer size specified in the buf_size parameter is too small for
the entire structure, the first buf_size halfwords are returned.

The following is
caller's buffer:

the structure returned by the subroutine in the

DCL 1 size_info,
2 version_number FIXED BIN(15),
2 struc_len FIXED BIN(15),
2 entry_type FIXED BIN(15),

/* Must be 1 */
/* Structure size (bytes)
/* Type, as follows:

*/

0
1
2
3
4
6
7.

: SAM file
: DAM file
: SAM segment dir
: DAM segment dir

User directory
ACAT
CAM file */

4-97 First Edition, Update 1

SUBROUTINES, VOLUME II SIZE$

2 logical_size FIXED BIN(31)

2 phys_recs FIXED BIN(31),

2 is_acl_dir BIT(l) ALIGNED,

2 num_entries FIXED BIN(31),

/*

/*

2 num_full_entries FIXED BIN(31)

/* Size in halfwords divided
by record_size. For SD,
total size of member
files. 0 for ACATs. */
Valid only for CAM files.
No. of physical records.*/
Valid only for user directory.
'1' b -> ACL directory. */

/* Valid only if entry is an
ACAT, user directory, or SD.
Total number of entries in
ACAT or user directory,
maximum number of entries
for SD. */

; /* Valid only for SD.
Current number of full
entries. */

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries:

R-mode: Not available.

Load NPFTNLB,

First Edition, Update 1 4-98

FILE AND DIRECTORY MANIPULATION

SRCH$$

Purpose

Open, close, delete, change access, or verify the existence of an
object.

Usage /

DCL SRCH$$ ENTRY (FIXED BIN, CHAR (32) W^t, FIXED BIN, FIXED BIN,
FIXED BIN, FIXED BIN)';

CALL SRCH$$ (action+ref+newfil, object_name, nam_len, funit,
type, code);

Parameters

action

INPUT. Indicates the action to be performed. Possible values are:

K$READ Open object_name for reading on funit.

K$WRIT Open object_name for writing on funit.

K$RDWR Open object—name for reading and writing on funit.

K$CLOS Close object_name or object open on funit.

K$DELE Delete object_name.

K$EXST Verify existence of object_name.

K$VMR Open object_name for VMFA read. Valid only if
object_name is an EPF-format run file.

ref

INPUT. Modify the action key as follows:

K$IUFD Search for object_name in the current directory.
(This is the default.)

K$ISEG Perform the action specified by action on the file
that is a segment directory entry in the directory
open on file unit specified in object_name.

4-99 First Edition, Update 1

SUBROUTINES, VOLUME II SRCH$$

K$CACC Change the access mode of the file already open on
funit to that specified in action (K$READ, K$WRIT,
K$RDWR only).

K$GETU Open object_name on an unused file unit selected by
PRIMOS. The unit number is returned in funit. See
example 6 below for use of this key.

newfil

INPUT. Type of file to create if object_name does not exist and
action is K$WRIT or K$RDWR. Possible values are:

K$NSAM New SAM file (This is the default.)

K$NDAM New DAM file

K$NSGS New SAM segment directory

K$NSGD New DAM segment directory

K$NCAM New CAM file

Note

It is not possible to create a directory with SRCH$$; use
DIR$CR instead.

object_name

INPUT. Name of the object to be opened (1 - 32 characters).
K$CURR can be used to open the current directory (action keys
K$READ, K$WRIT, or K$RDWR only) . If ref is K$ISEG, object_name is
a file unit from 1 to 126 (1 to 15 under PRIMOS II) on which a
segment directory is already open.

nam_len

INPUT. Length in characters (1-32) "of object_name.

funit

INPUT/OUTPUT. Number of the file unit to be opened or closed
(input). When SRCH$$ is used with ref = K$GETU, funit returns the
PRIMOS-selected file unit number.

First Edition, Update 1 4-100

SRCH$$ FILE AND DIRECTORY MANIPULATION

type

OUTPUT. Variable set to the type of the file opened, type is set
only on calls that open a file — it is unmodified for other calls.
Possible values of type are:

0 SAM file
1 DAM file
2 SAM segment directory
3 DAM segment directory
4 User directory
7 CAM file

code

OUTPUT. Standard error code

Discussion

The SRCH$$ subroutine has multiple uses. The most common use is to
open and close files. It can also be used to add, delete, change
access to, and verify the existence of file system objects.

Note

The delete functions of SRCH$$ are better performed by FIL$DL
and SGD$DL.

Opening Objects: Opening an object consists of connecting the object
to a file unit. After an object is opened, various input, output, and
positioning actions can be performed on it. These actions are
accomplished by other subroutines, which reference the object through
the associated file unit: PRWF$$, SGDR$$, RDEN$$, RDLIN$, WTLIN$,
I$AD07, O$AD07, RDASC, and WRASC. Information can also be transferred
through I/O statements in all high-level languages.

On opening an object, SRCH$$ specifies:

• Operations that can be performed by other subroutines. These
operations are read-only, write-only, or both read and write.

• Where to look for the object, or where to add the object if it
does not currently exist. SRCH$$ specifies either the name of
an object in the currently attached directory or a file unit
number on which a segment directory is open. In the segment
directory reference, file unit's current position pointer
indicates the segment directory member to be opened.

4-101 First Edition, Update 1

SUBROUTINES, VOLUME II SRCH$$

For an ACL-protected object, the user must have access to the object
and its containing directory appropriate to the action to be performed; /r^
the object's access control list specifies the rights a given user or
group has to the object.

For password-protected objects, each object in a directory has two sets
of access rights, one for the owner and one for the nonowner of the
directory. When an object is created, its owner has all rights (Read,
Write, Delete), and nonowners have none. These rights can be changed
using the PROTECT command or the SATR$$ subroutine. The access rights
are checked on any attempt to open an object. SRCH$$ returns a NO
RIGHTS error code (E$NRIT) if the user does not have the required
rights under either kind of protection.

If a file cannot be found when opening for reading, SRCH$$ returns the
FILE NOT FOUND error code (E$FNTF). If the file unit is already in
use, SRCH$$ generates the unit-in-use error code (E$UIUS).

Closing an Object; The SRCH$$ subroutine can close an object by name
or by file unit. SRCH$$ attempts to close by object_name unless
nam_len is specified as 0, in which case it closes the file unit
specified. If object—name is not found, an error is generated (code =
E$FNTF), but if the file unit is specified, SRCH$$ ensures that the
file unit specified by funit is closed and does not return an error
code (unless funit is out of range).

If the disk is not write-protected, closing the object updates its
date/time last accessed field. If the object was modified while it was
open, closing it updates its date/time modified field as well.

The Read/Write Lock: By default, PRIMOS allows any number of readers,
or a single writer and no readers for the same object. The system
prevents one user from opening a file for writing when another user has
the file open for reading or writing. It also prevents one user from
opening the file for reading or writing while another user has the file
open for writing. These locks also hold for a single user attempting
to open a file on more than one file unit. If a lock violation is
attempted, SRCH$$ returns the FILE IN USE (E$FIUS) error code.

This lock can be changed on a per-file basis. (Refer to the SATR$$
subroutine, described earlier in this chapter.)

Changing the Access Mode of an Open Object; Using the K$CACC subkey, a
user can change the access mode of an object that is open on funit to
open for reading, open for writing, or open for both reading and
writing. Note that access rights and the read/write lock rules for the
object are checked and the attempt to change access may fail.

First Edition, Update 1 4-102

SRCH$$ FILE AND DIRECTORY MANIPULATION

Adding Objects in Directories: A call to SRCH$$ to open a file for
writing or both reading and writing causes SRCH$$ to look in the
current directory for the file. If it is not found in the directory,
SRCH$$ creates a new file of zero length and puts an entry for the file
into the directory.

The date/time created and the date/time accessed fields of the file are
set to the current date/time, the access rights are set to their
default values, the read/write lock is set to the system default, and
the file type to the type specified by the newfil subkey. If the
newfil subkey is not specified, it is a SAM file.

Verifying the Existence of a File: The K$EXST key can be used to
determine whether a specific object exists in the current directory or
in a segment directory. The object is not affected in any way. The
access rights and the read/write lock are not checked, nor is the
date/time last accessed field changed.

Operations on Subdirectories: The contents of entries of
subdirectories can be read through calls to ENTRD, DIRLS, DIRSRD,
DIR$SE, and GPAS$$ once the subdirectory is open. The current
directory can be opened by specifying the key K$CURR in the object_name
field of the SRCH$$ call. While the current directory can be opened
for writing, or for reading and writing, write operations such as
PRWF$$ cannot explicitly write to the directory. Only implicit writes,
such as those performed automatically when updating the directory to
reflect changes, are permitted.

Calls to the SATR$$ or SPAS$$ subroutines require that the current
directory not be open, otherwise the FILE IN USE error is returned.
New directories can be created only by using the CREA$$ subroutine;
SRCH$$ does not allow creation of a directory. Directories can be
deleted with SRCH$$ only if the directory contains no files. The
DELETE command can delete a nested structure of directories, provided
they are not protected.

Operations Involving Segment Directories: Segment directories are
directories in which the files are referenced numerically by their
position in the directory rather than by a name. Furthermore, the
directory entry associated with a file contains the attributes, such as
date/time, protection, and the read/write lock, of the highest level
segment directory in the directory. Segment directories are not
attached to, but are operated on using SRCH$$ and SGDR$$.

To create, a segment directory, use SRCH$$ to open a new object for
reading and writing with newfil specified as K$NSGS or K$NSGD.

With the file open, use a SGDR$$ call to make the segment directory
contain a certain number of null file entries (K$MSIZ key).

4-103 First Edition, Update 1

SUBROUTINES, VOLUME II SRCH$$

To create a file in a segment directory, perform the following steps:

1. Open the directory for reading and writing on a file unit (for
example, SUNIT), if it is not already open.

2. Use SGDR$$ to position to the null file entry into which the
new file is to be placed.

3. Use SRCH$$ to open a new file in the segment directory for
writing, or for reading and writing. Use the K$ISEG reference
key and place the SUNIT number of the segment directory in the
object_name parameter. Place the file unit of the new file in
the funit parameter. SRCH$$ creates the new file and places a
pointer to the new file in the segment directory entry
specified by SUNIT.

Use SRCH$$ with the K$ISEG subkey to close a file in a segment
directory by unit or by name.

To open a file that already exists in a segment directory, use SRCH$$
and SGDR$$ to open the segment directory and position to the desired
entry as explained above. If the directory entry already contains a
pointer to the file, that file is opened. If not, and the attempt is
to open for reading, the FILE NOT FOUND error is returned. Any object
type except a directory can be created in a segment directory.

To delete a file in a segment directory, open the segment directory,
position to the file desired, and then use SRCH$$ with the K$ISEG and
K$DELE subkeys. SRCH$$ returns the object's records to the DSKRAT and
replaces the pointer to the file with a null pointer in the segment
directory entry.

Finally, to delete a segment directory, first delete all files in the
directory using SGD$DL, set the size of the directory to 0 using
SGDR$$, close the directory, and then delete it with FIL$DL. The
DELETE subcommand of the SEG command can also be used to delete a
segment directory.

Files in a segment directory have the protection attributes of the
directory. The date/time fields of the directory reflect the latest
change made to the directory or any file in the directory.

First Edition, Update 1 4-104

SRCH$$ FILE AND DIRECTORY MANIPULATION

The following examples illustrate some uses of the SRCH$$ subroutine:

Example 1: Open new SAM file named 'RESULTS' for output on file unit
2:

CALL SRCH$$(K$WRIT, 'RESULTS', 7, 2, TYPE, CODE)

Example 2; Create new DAM file in the segment directory open on SGUNIT
and open for reading and writing on DMUNIT:

CALL SRCH$$(K$RDWR+K$ISEG+K$NDAM, SGUNIT, 1, DMUNIT, TYPE,
CODE)

Example 3: Close and delete the file created in the above call

CALL SRCH$$(K$CLOS, 0, 0, DMUNIT, 0, CODE)
CALL SRCH$$ (K$DELE+K$ISEG, SGUNIT, 0, 0, 0, CODE)

Example 4: See if filename 'MY.BLACK.HEN' is in current directory:

CALL SRCH$$ (K$EXST+K$IUFD, 'MY.BLACK.HEN', 12, 0, TYPE,
CODE)

IF (CODE.EQ.E$FNTF) CALL TNOU('NOT FOUND', 9)

Example 5: Create a new segment directory and a new SAM file as its
first entry:

CALL SRCH$$(K$RDWR+K$NSGS, 'SEGDIR', 6, UNIT, TYPE, CODE)
CALL SRCH$$(K$WRIT+K$NSAM+K$ISEG, UNIT, 0, 7, TYPE, CODE)

Example 6: Open the file named 'FILE' in the user's currently attached
directory:

CALL SRCH$$(K$READ+K$GETU, 'FILE', 4, UNIT, TYPE, CODE)
IF (CODE .NE. 0) GOTO error_processor

The above FORTRAN call attempts to open the file named 'FILE' in the
user's current directory. If successful, the file unit number on which
'FILE' is opened is returned in UNIT, the type of the file opened is
returned in TYPE, and CODE is set to 0. If there are any errors, CODE
is nonzero, and the values of TYPE and UNIT are undefined.

4-105 First Edition, Update 1

SUBROUTINES, VOLUME II SRCH$$

If no file units are available, the error code E$FUIU (all units in
use) is returned. This code is returned if either the user process has
exceeded the maximum number of file units allowed, or the total number
of file units in use for all processes exceed the maximum number of
file units available.

Example 7: Open file by name:

/•A***/

open$:

proc(key, fullname, unit, type, code);

%include ' syscom>keys.pll';

%replace sam_file by 0,
dam_file by 1,
sam_segdir by 2,
dam_segdir by 3,
directory by 4/

del key
fullname
treename
treelength
unit
type
code

del srch$$
newfil

del at$
del at$hom
del extr$a

del full
del tree

filename
del length

bin,
char(*) var,
char(128) var,
bin,
bin,
bin,
bin;
entry(bin, char(*), bin, bin, bin, bin),
bin;
entry(bin, char(128) var, bin);
entry(bin);
entry(char(*) var, char(*) var, bin,
char(32) var, bin);
bit(l) aligned;
bit(l) aligned,
char(32) var;
bin;

First Edition, Update 1 4-106

SRCH$$ FILE AND DIRECTORY MANIPULATION

code = 0;
full = (index(fullname, '>') A= 0) ;
if full

then do;
call extr$a(fullname,treename,treelength, filename,code);
if code A= 0 then go to clean_up;
tree = (index(treename, '>') A= 0);
if full | tree

then do;
call at$ (k$setc, treename, code);
if code A= 0

then go to clean_up;
end;

end;

newfil = k$nsam;
if key = k$writ | key = k$rdwr

then if type = dam_file
then newfil = k$ndam;

else if type = sam_segdir
then newfil = k$nsgs;

else if type = dam_segdir
then newfil = k$nsgd;

call srch$$ (key+newfil+k$getu, filename, length,
unit, type, code);

clean_up:
if tree

then call at$hom (code);
return;

end open$;

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

4-107 First Edition, Update 1

SUBROUTINES, VOLUME I I

SRSFX$

Purpose

Search for a file with a list of possible suffixes.

Usage

DCL SRSFX$ ENTRY (FIXED BIN, CHAR(*)VAR, FIXED BIN, FIXED BIN,
FIXED BIN, (*)CHAR(32)VAR, CHAR(32)VAR,
FIXED BIN, FIXED BIN)
[RETURNS (FIXED BIN(3D);]

CALL SRSFX$ (action+ref+newfile, object_narae, funit, type, n_suffixes,
suffix_list, basename, suffix_used, code);

chrpos = SRSFX$ (action+ref+newfile, object_name, funit, type,
n_suffixes, suffix_list, basename, suffix_used,
code);

Parameters

action

INPUT. Action to be performed. Possible values are:

K$READ Open object_name for reading on funit.

K$WRIT Open object_name for writing on funit.

K$RDWR Open object_name for reading and writing on funit.

K$CLOS Close object_name.

K$DELE Delete object_name.

K$EXST Check on existence of object_name.

K$VMR Open object_name for VMFA read. Valid only if
object_name is an EPF-format run file.

ref

INPUT. Modifies the action key as follows:

K$IUFD Search for ob1ect__name in the current directory.
(This is the default.)

First Edition, Update 1 4-108

SRSFX$ FILE AND DIRECTORY MANIPULATION

KSISEG Perform the action specified by action on the file
that is a segment directory entry in the directory
open on file unit specified in object_name.

K$CACC Change the access mode of the file already open on
funit to that specified in action (K$READ, K$WRIT,
K$RDWR only).

K$GETU Open object_name on an unused file unit selected by
PRIMOS. The unit number is returned in funit.

newfile

INPUT. Indicates the type of file to create if object_name does
not exist and action is K$WRIT or K$RDWR. Possible values aref

K$NSAM

K$NDAM

K$NSGS

K$NSGD

K$NCAM

object_name

New SAM file (This is the default.)

New DAM file

New SAM segment directory

New DAM segment directory

New CAM file

INPUT. Pathname to use for search (remains unchanged)
of '' (null string) opens the current directory.

A pathname

funit

INPUT. File unit opened (returned with K$GETU) or file unit to use
for SRCH$$ action without K$GETU.

type

OUTPUT. File type opened.

n_suffixes

INPUT. Number of suffixes in suffix_list. A value of 0 indicates
not to use the file naming standards with suffixes for the search.

suffix_list

INPUT. List of desired suffixes to use. Each suffix should
include the period and be in capital letters, for example,
suffix_list(i) = .F77. The suffixes can have varying lengths;
therefore the suffix list of variable strings is declared as
(*)CHAR(32)VAR.

4-109 First Edition, Update 1

SUBROUTINES, VOLUME II SRSFX$

basename

OUTPUT. Base filename (that is, without a suffix) to be searched
for according to the suffix list.

suffix_used

OUTPUT. Index, in the suffix list given, of the suffix used for
the search. A value of 0 denotes that the null suffix was used.

code

OUTPUT. Standard error code.

chrpos

OPTIONAL RETURNED VALUE. When SRSFX$ is called as a function, a
FIXED BIN(31) value is returned. The first halfword points, in the
case of an invalid pathname, one character past the pathname
component that caused the error. The second halfword is the
pathname length.

Discussion

SRSFX$ is intended for use with the file naming convention that appends
a standard suffix by means of a period, as in MYPROG.PASCAL. The
suffix list defines both the suffixes to scan for and the search order.
If the suffix already exists at the end of the filename, then a tree
search is performed with the pathname as is.

If none of the suffixes in the list are found appended to pathname, the
subroutine attaches to the appropriate directory, each suffix in the
list is appended to the filename, and a search is done. In this way
the suffix list defines the search order. The routine returns when a
filename suffix is found or the suffix list is exhausted.

If a file is found, the index (in the suffix list) of the last suffix
in the filename is returned; if no file is found, or if none of the
suffixes in the list is on the found filename, an index of 0 is
returned.

SRSFX$ can be combined with APSFX$ to force a name to have a suffix
according to the current file naming conventions, even if the file did
not originally have one. For example, the ACL command SET_ACCESS looks
for an access category with the suffix .ACAT. If SRSFX$ finds a file
with no such suffix, APSFX$ can then be used to return the filename
plus the suffix required for the next step.

First Edition, Update 1 4-110

SRSFX$ FILE AND DIRECTORY MANIPULATION

The following restrictions apply when using the SRSFX$ call:

• The null string is not allowed as an element of the suffix list.
The null suffix is assumed if no desired suffix is found. In
this case the suffix index is set to 0.

• If the suffix list contains . F77, a pathname such as
pathname>.F77 is treated as a valid suffix found; that is,
.F77. The filename returned is the null string ('')•

• If the filename and suffix exceed 32 characters or the pathname
and suffix exceed 128 characters, a search with suffix is not
done and the next suffix is attempted. For example, a filename
of 32 characters is simply searched for as is.

• The suffixes in the suffix list provided by the caller must
contain the period and be all capital letters; for example,
.F77.

Here is an example of a simple program that uses SRSFX$ to check on the
existence of a file. It also uses the CL$PIX routine.

main:

proc ;

$Insert syscom>keys.ins.pll

$Insert syscom>errd.ins.pll

/* External entry points */
del srsfx$ entry (fixed bin, char(*)var, fixed bin, fixed bin,

fixed bin, (1) char(32)var, char(32)var, fixed bin,
fixed bin),

cl$get entry (char(*)var, fixed bin, fixed bin),
cl$pix entry (bit(16) aligned, char(*)var, ptr, fixed bin,

char(*)var, ptr, fixed bin, fixed bin, fixed bin, ptr),
errpr$ entry (fixed bin, fixed bin, char(*), fixed bin, char(*),

fixed bin),
tnoua entry (char(*), fixed bin),
todec entry (fixed bin),
tnou entry (char(*), fixed bin);

/* Local declarations */

del 1 bvs based, /* Based Varying String */
2 len fixed bin,
2 chars char (128);

del pathname char(80)var,
dir_name char(80)var,
fil_name char(80)var,
unit fixed bin,

4-111 First Edition, Update 1

SUBROUTINES, VOLUME II SRSFX$

type fixed bin,
num_suff fixed bin,
suff_list (10) char(32)var,
suff_used fixed bin,
status fixed bin,
code fixed bin,
non_st_code fixed bin,
pix_index fixed bin,
bad_index fixed bin,
picture char(30)var,
pic_ptr ptr,
out_ptr ptr,
arg_line char(150) var;

del 1 args,
2 dir char(128) var,
2 file char(32) var;

/* PROMPT USER FOR ARGUMENTS */

call tnoua('Enter directory pathname and filename arguments:', 49);

/* READ IN ARGS TO CALL */

call cl$get (arg_line, 150, code);
if code A= 0

then call errpr$(k$nrtn, code, 'CANNOT READ ARGS', 16, 'test', 9);

else do;

/* SET UP DATA FOR CL$PIX */

picture = 'tree; entry; end';
pic_ptr = addr(picture);
out_ptr = addr(args);

/* CALL CL$PIX TO PARSE ARGUMENTS */

call cl$pix(0, 'test', pic_ptr, 30, arg_line, out_ptr,
pix_index, bad_index, non_st_code, nullO);

if non_st_code A= 0
then do;
call tnoua ('CANNOT PARSE ARGS, error code = ', 32);
call todec (non_st_code);
call tnouC ', 1) ;
end;

else do;

First Edition, Update 1 4-112

SRSFX$ FILE AND DIRECTORY MANIPULATION

/* CHECK FOR EXISTENCE OF FILE IN SON, FATHER, GRANDFATHER ORDER */

unit = 2;
num_suff = 3;
suff_list(l) = '.SON';
suff_list(2) = '.FATHER';
suff_.list (3) = '.GRANDFATHER';

pathname = dir || '>' || file;
call srsfx$(k$exst, pathname, unit, type, num_suff,

suff_list, file, suff_used, status);
if status > 0

then call errpr$(k$irtn, status, addr (pathname) ->
bvs.chars, length (pathname), '', 0);

else do;
if suff_used = 0

then do;
call tnoua('base file name only found: ', 27);
call tnou(addr(pathname) -> bvs.chars,

addr(pathname) -> bvs.len);
end;

else do;
pathname = pathname I I suff_list(suff_used);
call tnoua (addr(pathname) -> bvs.chars,

addr(pathname) -> bvs.len);
call tnou C form of file name found', 24);
end;

end;
end;

end;
end;

This program gives the following output if the '.SON' form of the file
exists:

R TEST
Enter directory pathname and filename arguments: TEST_UFD TEST_FILE
TEST_UFD>TEST_FILE.SON form of file name found

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

4-113 First Edition, Update 1

SUBROUTINES, VOLUME I I

TNCHK$

Purpose

Verify a supplied string as a valid pathname.

Usage

DCL TNCHK$ ENTRY (FIXED BIN, CHAR(*)VAR) RETURNS (BIT(l));

name_ok = TNCHK$ (key, pathname);

Parameters

key

INPUT. Determines the restrictions to be placed on the name. Keys
can be added together. Possible values are:

K$UPRC Change name to uppercase before checking.

K$WLDC Allow wildcard characters in name.

K$NULL Allow a null pathname.

pathname

INPUT. Must follow the rules for pathnames given in the Prime
User's Guide, modified by the key above.

name_ok

RETURNED VALUE. Set to true (1) if the name is valid given the
restrictions of the keys.

Discussion

Pathnames are discussed in Prime User's Guide.

The TNCHK$ call does not check on the existence of the object
represented by pathname, but only that the pathname obeys the rules for
constructing pathnames. Entrynames within the pathname can be checked
individually for validity by calls to FNCHK$, described earlier in this
chapter.

First Edition, Update 1 4-114

TNCHK$ FILE AND DIRECTORY MANIPULATION

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-115 First Edition, Update 1

SUBROUTINES, VOLUME I I

TSRC$$

Purpose

Open a file anywhere in the PRIMOS file structure.

This subroutine is considered obsolete, and its use in new programming
is discouraged. Use SRSFX$ instead. Users maintaining existing
programs that call TSRC$$ can refer to Appendix A for a complete
description of the subroutine.

First Edition, Update 1 4-116

FILE AND DIRECTORY MANIPULATION

UNITS$

Purpose

Return the minimum and maximum file unit numbers currently in use by
this user.

Usage

DCL UNITS$ ENTRY(FIXED BIN (15), FIXED BIN (15));

CALL UNITS$ (min_unit, max_unit);

Parameters

min_unit

OUTPUT. Lowest-numbered file unit currently in use by this user.

max_unit

OUTPUT. Highest-numbered file unit currently in use by this user.

Discussion

Although normal file unit numbers always start at 1, PRIMOS uses some
negative unit numbers for internal purposes. Therefore, the minimum
unit number can be negative (and is -5 for Revision 20.2).

The numbers returned in min_unit and max_unit do not imply that all
intervening numbers are currently associated with this (or any other)
user. Nor is it possible, using this call, to determine which of the
intervening numbers are or are not in use by the caller.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries:

R-mode: Not available.

Load NPFTNLB,

4-117 First Edition, Update 1

SUBROUTINES, VOLUME I I

WILD$

Purpose

Return a logical value indicating whether a wildcard name was matched.

Usage

DCL WILD$ ENTRY (CHAR(32) VAR, CHAR(32) VAR, FIXED BIN)
RETURNS (BIT(l) ALIGNED);

did_match = (wildname, entryname, code);

Parameters

wildname

INPUT. Wildcard name to match,

entryname

INPUT. Entryname against which to match

code

OUTPUT. Standard error code.

did_match

RETURNED VALUE. Match found if returned value is 1; match not
found if returned value is 0.

Discussion

Matching is done according to standard PRIMOS wildcard matching rules.
For a description of wildcard names, refer to the Prime User's Guide.

It is not necessary for entryname to exist. WILD$$ simply performs a
textual manipulation of the two specified names.

First Edition, Update 1 4-118

WILD$ FILE AND DIRECTORY MANIPULATION

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-119 First Edition, Update 1

SUBROUTINES, VOLUME I I

WTLIN$

Purpose

Write a line of characters to a file in compressed ASCII format.

Usage

DCL WTLIN$ ENTRY (FIXED BIN, CHAR(*), FIXED BIN, FIXED BIN);

CALL WTLIN$(funit, buffer, count, code);

Parameters

funit

INPUT. File unit on which the file to be written is open for
writing.

buffer

INPUT. Array of count halfwords from which the line of characters
is to be written. It should contain two characters per halfword.

count

INPUT. The size of buffer in halfwords,

code

OUTPUT. Standard error code.

Discussion

Information is written on the disk in compressed ASCII format.
Multiple blank characters are replaced by the control character DCl
(221 octal) followed by a character count. Trailing blanks are removed
and the end of record is indicated by adding a newline character, or a
newline character followed by null.

First Edition, Update 1 4-120

WTLIN$ FILE AND DIRECTORY MANIPULATION

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

4-121 First Edition, Update 1

5
EPF Management

This chapter describes the group of subroutines that support the PRIMOS
Executable Program Format (EPF) mechanism. EPFs and their operation
are described in detail in the Advanced Programmer's Guide; how to
create them and make them accessible for execution is described in the
Programmer's Guide to Bind and EPFs.

EPF execution consists of allocating virtual memory space in which the
EPF can run and store its data; mapping the EPF to virtual memory;
initializing the EPF's linkage areas; and finally, invoking, or
starting the execution of, the EPF. Subroutines are provided to
perform each of these functions separately.

Also provided is a subroutine that combines, in a single call, all of
the above functions, as well as subroutines used for housekeeping of
EPFs and their virtual memory segments.

5-1 First Edition

SUBROUTINES, VOLUME II

The following subroutines, their declarations, and their calling
sequences are described in this chapter:

EPF$ALLC Perform the linkage allocation phase for an EPF.

EPF$CPF Return the state of the command processing flags in an EPF.

EPF$DEL Deactivate the most recent invocation of a specified EPF.

EPF$INIT Perform the linkage initialization phase for an EPF.

EPF$INVK Initiate the execution of a program EPF.

EPF$MAP Map the procedure images of an EPF file into virtual
memory.

EPF$RUN Combine functions of EPF$ALLC, EPF$MAP, EPF$INIT, and
EPF$INVK.

REMEPF$ Remove an EPF from a user's address space.

RPL$ Replace one EPF runfile with another.

First Edition 5-2

EPF MANAGEMENT

EPF$ALLC

EPF$AL is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Perform the linkage allocation phase for an EPF.

Usage

DCL EPF$ALLC ENTRY (PTR OPTIONS (SHORT), FIXED BIN);

CALL EPF$ALLC (epf_id, code);

Parameters

epf_id

INPUT. The identifier of the mapped-in EPF (created by EPF$MAP)

code

OUTPUT. Standard error code. Possible values are:

E$BPAR An invalid epf_id has been passed as a parameter,
probably indicating that the EPF was not successfully
mapped into memory by EPF$MAP.

E$ILTD An invalid EPF LTD linkage descriptor type has been
found within the EPF file. Resubmit the file to BIND.

E$EPFT An invalid EPF type field was detected when trying to
allocate storage. Resubmit the file to BIND.

Discussion

The EPF$ALLC call allocates storage for the linkage and static data
areas of an EPF. All the template information for the storage needs is
contained within the EPF file itself.

5-3 First Edition

SUBROUTINES, VOLUME II EPF$ALLC

Memory storage is allocated from temporary segments in the dynamic
segment range. EPFs are allocated static data and linkage area space
in process-class storage. All storage is managed by PRIMOS.

Refer to the Advanced Programmer's Guide for a discussion of storage
classes.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPPTNLB.

R-mode: Not available.

First Edition 5-4

EPF MANAGEMENT

EPF$CPF

EPF$CP is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Return the state of the command processing flags in an EPF.

Usage

DCL EPF$CPF ENTRY (PTR OPTIONS (SHORT) ,
1, 2, 3 BIT(l),

3 BIT(l),
3 BIT(l),
3 BIT(l),
3, 4 BIT(l),

4 BIT(l),
4 BIT(l),
4 BIT(l),

A 4 BIT(l),
f^ 3 BIT (7),

2 FIXED BIN(15),
FIXED BIN(15));

CALL EPF$CPF (epf_id, epf_info, code);

Parameters

epf_id

INPUT. The identifier of the mapped-in EPF.

epf_info

OUTPUT. The structure that is to contain the EPF command
processing features. The structure is described below.

code

OUTPUT. Standard error code. Possible values are:

E$BPAR An undefined value of epf_id was passed as a
parameter, probably indicating that the EPF was not
successfully mapped into memory by EPF$MAP.

5-5 First Edition

SUBROUTINES, VOLUME II EPF$CPP

Discussion

The command processing features that the EPF can invoke are set during
the execution of the EPF linker, BIND.

The structure in which the invokable features are returned is shown
below. Refer to the Advanced Programmer's Guide for explanations of
each bit.

1 epf_info based,
2 commancLJElags,

3 wildcards bit(l),
3 treewalks bit(l),
3 iteration bit(l),
3 verify bit(1),
3 file_types,

4 file bit(l),
4 directory bit(l),
4 segdir bit(l),
4 acat bit(l),
4 rbf bit(l),
4 reserved bit(7),

2 name_generation_position fixed bin(15);

Loading and Linking Information /*"%

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 5-6

EPF MANAGEMENT

EPF$DEL

EPF$DL is an alternate name, whic'. is required for FTN and is optional
for other languages.

Purpose

Deactivate the most recent invocation of a specified EPF.

Usage

DCL EPF$DEL ENTRY (PTR OPTIONS (SHORT), FIXED BIN(15));

CALL EPF$DEL (epf_id, code);

Parameters

epf_id

INPUT. The identifying number of the EPF to be deactivated. This
number is supplied by the EPF$MAP subroutine (described later in
this chapter).

code

OUTPUT. Standard error code. Possible values are:

E$BPAR An undefined epf_id has been passed as a parameter,
probably indicating that the EPF was not successfully
mapped into memory by EPF$MAP.

E$EPFT An invalid EPF type field was detected. Resubmit the
file to BIND.

E$BVER An invalid EPF version was detected. Resubmit the
file to BIND.

E$SWPR An attempt was made to delete an EPF that is suspended
in the calling process.

5-7 First Edition

SUBROUTINES, VOLUME II EPF$DEL

Discussion

The EPF$DEL subroutine deactivates one invocation of an EPF for the
calling process. The segment(s) used for linkage and static data for
the most recent invocation of the EPF are returned to the free pool of
dynamic segments. If this EPF has not been previously executed by a
call to EPF$INVK, the EPF procedure segment(s) are released, and the
storage used by the in-memory EPF data base is released.

The invocation of an EPF uses valuable system resources. Each
invocation of an EPF program should be followed by a call to EPF$DEL to
free the storage allocated for program linkage and static storage,
unless the EPF is to be invoked again in a relatively short time.

If the EPF invocation is not terminated by a call to EPF$DEL, system
segments are not returned to the free segment pool, and a user may
eventually run out of segments in the dynamic segment range.

If an error occurs while attempting to return EPF procedure segments to
the system, the message "Unable to free EPF procedure segments" is
displayed, and the user's command environment is reinitialized.

Any error detected while deallocating storage causes an appropriate
error message to be displayed at the user's terminal and the user's
command environment to be reinitialized.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 5-8

EPF MANAGEMENT

EPF$INIT

EPF$NT is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Perform the linkage initialization phase for an EPF,

Usage

DCL EPF$INIT ENTRY (FIXED BIN(15),PTR OPTIONS (SHORT),
FIXED BIN(15));

CALL EPF$INIT (key, epf_id, code);

Parameters

key

INPUT. Specifies the action to be performed. Possible values are:

K$INITALL (K$INAL for FTN callers)
Specifies complete initialization of data areas.

K$REINIT (K$REIN for FTN callers)
Specifies re-initialization of only the data areas.
EPF$INIT reinitializes only the static data and
faulted indirect pointers (IPs), but maintains other
data such as resolved IPs and entry control blocks.

epf_id

INPUT. The identifier of the mapped-in EPF (supplied by EPF$MAP,
described later in this chapter).

5-9 First Edition

SUBROUTINES, VOLUME II EPF$INIT

code

OUTPUT. Standard error code. Possible values are:

E$BARG

E$BKEY

E$BLTE

E$BLTD

E$BPAR

E$BVER

E$EPFT

Linkage and static data areas for the EPF were not
allocated. Call EPF$ALLC before calling EPF$INIT.

An invalid key was used in the call, probably an
attempt to reinitialize before a complete
initialization was done.

An invalid EPF LTE linkage descriptor type has been
found within the EPF file. Resubmit the file to BIND.

An invalid EPF LTD linkage descriptor type has been
found within the EPF file. Resubmit the file to BIND.

An undefined epf__id has been passed as a parameter,
probably indicating that the EPF was not successfully
mapped into memory by EPF$MAP.

An invalid EPF version was detected,
file to BIND.

Resubmit the

An invalid EPF type field was detected when trying to
allocate storage. Resubmit the file to BIND.

Discussion

The EPF must already be mapped to memory (by EPF$MAP), with its static
data areas already allocated (by EPF$ALLC).

The EPF$INIT call must be made with a key value of K$INITALL before any
call is made with a key value of K$REINIT; that is, a complete
initialization of a mapped and allocated EPF must have been performed
at least once before a reinitialization can be done.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries:

R-mode: Not available.

Load NPFTNLB.

First Edition 5-10

EPF MANAGEMENT

EPF$INVK

EPF$VK is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Initiate the execution of a program EPF.

Usage

DCL EPF$INVK ENTRY (PTR OPTIONS (SHORT), FIXED BIN(15));

CALL EPF$INVK (epf_id, code);

or

DCL EPF$INVK ENTRY (PTR OPTIONS (SHORT), FIXED BIN(15),
CHAR<1024) VAR, FIXED BIN(15),
1, 2 CHAR(32) VAR,

2 FIXED BIN(15),
* 2 PTR OPTIONS (SHORT) ,

2, 3 FIXED BIN(31),
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

FIXED BIN (31),
FIXED BIN(31),
FIXED BIN(31),
BIT(l),
BIT(l),
BIT(l),
BIT(l),
BIT(l),
BIT(11),
BIT(l),
BIT(l),
BIT(14),
FIXED BIN(15),
FIXED BIN(15),
BIT(l),
BIT(l),
BIT(l),
BIT(13),

1, 2 BIT(l), 2 BIT(l),
2 BIT(14),

PTR) ;

CALL EPF$INVK (epf_id, code, com_args, ret_code, com_state,
flags, rtn_function_^>tr) ;

5-11 First Edition

SUBROUTINES, VOLUME II EPF$INVK

Parameters

epf_id INPUT. The identifier of the EPP (supplied by EPF$MAP,
described later in this chapter).

code

OUTPUT. Standard error code. Possible values are:

E$BPAR Undefined identifier of the EPF has been passed as a
parameter, probably indicating that the EPF was not
successfully mapped into memory by EPF$MAP.

E$EPFT An invalid EPF type field was detected. Resubmit the
EPF to BIND.

ESBVER An invalid EPF version was detected. Resubmit the EPF
to BIND.

com_args

INPUT. Arguments to the invoked EPF.

ret_code

OUTPUT. Return code from execution of the invoked EPF. Any
standard error code generated during program execution may be
returned. Refer to the Advanced Programmers Guide for a complete
list.

com_state

INPUT. Contains information relative to the EPF invocation. The
format is described in the Discussion section.

flags

INPUT. Contains information relative to the command function
invocation. The format is described in the Discussion section.

rtn_f unct ion_pt r

OUTPUT. Pointer to a return function structure used by an EPF
acting as a function. The format is described in the Discussion
section.

Discussion

Program EPFs written as programs (that is, expecting no command
arguments and returning no error code) are normally invoked with the
first calling sequence shown in the Usage section above. Program EPFs
written as functions, and those expecting arguments, must be invoked

First Edition 5-12

EPF$INVK EPF MANAGEMENT

using the second calling sequence. The additional arguments are
provided for passing invocation information to the program being
invoked/ and for returning data to the invoking program.

The Advanced Programmers Guide contains a full description of the ways
in which EPFs can be invoked from within other programs.

Before the EPF$INVK call is made, the EPF must have been mapped into
virtual memory and the static data areas must be both allocated and
initialized. The required order of calls is EPFMAP, EPFALLC,
EPF$INIT, and EPF$INVK.

The address of the starting entry control block for the EPF is found
from the Control Information Block (CIB) within the EPF, and the EPF is
invoked by issuing a PCL instruction to the ECB.

The calling program supplies in com_state information required by the
invoked EPF when it expects arguments or when it is called as a
function. The format of com_state is shown below.

1 com_state,
2 conujiame char (32) var,
2 version fixed bin(15),
2 vcb_ptr ptr,
2 reserved_l fixed bin(15),
2 cp_iter_info,
3 mod_after_date fixed bin(31),
3 mod_before_date fixed bin(31),
3 bk_after_date fixed bin(31),
3 bk_before_date fixed bin(31),
3 type_dir bit(l),
3 type_segd bit(l),
3 type_file bit(l),
3 type_acat bit(1),
3 type_rbf bit(l),
3 reserved_2 bit(11),
3 verify_sw bit(l),
3 botup_sw bit(1),
3 reserved_3 bit(14),
3 walk_from fixed bin(15),
3 walk__to fixed bin(15),
3 in_iteration bit(l),
3 in_wildcard bit(l),
3 in_treewalk bit(l),
3 reserved_4 bit (13),
3 created_after_date fixed bin(31),
3 created_before_date fixed bin(31),
3 accessed_after_date fixed bin(31),
3 accessed_before_date fixed bin(31);

5-13 First Edition

SUBROUTINES, VOLUME II EPF$INVK

The level-2 fields above have the following meanings:

com_name Name of the EPF command.

version Version of the com_state structure, set to either 0 or 1;
0 signals that only these first two fields have defined
values, while 1 signals that all four of these are
defined and provided by the caller.

vcb_ptr Pointer to local CPL variables allocated during the
execution of a CPL program. This field is null {) if
there is no invoking CPL program.

cp_iter_info Information relative to the extended command processing
features for the command. This information is passed to
the invoked EPF from the calling program. The last four
date fields are valid only at Rev. 20.0 and later.

The flags argument informs the called EPF that it is being called as a
function, and that it is expected to return a function value; it has
the following format:

1 flags,
2 command_function_call bit(l),
2 no_eval_vbl_fens bit(1),
2 reserved bit(14);

The first bit, if set, indicates that the program was called as a
command function; the remaining fifteen bits are undefined.

The format of the structure pointed to by the rtn_fcn_strue pointer is:

1 rtn_fcn_struc,
2 version fixed bin (15),
2 value_str char (*) var;

The version must be set to zero by the called EPF. The memory space
for this data will have been 'allocated by the EPF. The caller uses
this data and later de-allocates the memory space using FRE$RA.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 5-14

EPF MANAGEMENT

EPF$MAP

EPF$MP is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Map the procedure images of an EPF file into virtual memory.

Usage

DCL EPF$MAP ENTRY (FIXED BIN(15), FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15)) RETURNS (PTR OPTIONS (SHORT));

epf_id «=» EPF$MAP (key, unit, access_rights, code) ;

Parameters

key

INPUT. Segment mapping options. Possible values are:

K$ANY Use any available segment(s).

K$COPY Copy the segment-image (s) of the file into temporary
segment(s). DBG uses this option to obtain writable
segment(s) for debugging.

K$DBG Map DBG information. Used only by DBG, this causes
the segment-image (s) of the EPF file that contain the
DBG information to be mapped into memory.

unit

INPUT. The file unit on which the EPF is currently open for
VMFA-read.

access_rights

INPUT. The access rights to place on the VMFA segments. Possible
values are:

K$R Read only access on segment

K$RX Read/execute access

5-15 First Edition

SUBROUTINES, VOLUME II EPF$MAP

Currently, K$R gives only read access; it does not permit
execution. K$RX give execution access and also implies read
access. Use K$RX to be assured of future compatibility.

code

OUTPUT. Standard error code. See the Discussion section.

epf_id

RETURNED VALUE. The identifier of the mapped-in EPF. This
identifies the in-memory EPF when calling other EPF$ subroutines.
If an error is returned to the caller, epf_id is undefined.

Discussion

The EPF$MAP subroutine is called to perform the map-to-memory function
of the EPF mechanism. The EPF file must already have been opened for
VMFA-read on a file unit; that is, you must first call either SRCH$$
or SRSFX$ with the K$VMR key specified. Refer to Chapter 4 for
descriptions of these subroutines.

If the EPF file in question is to be used as a program (rather than a
library), then this routine is the first of four subroutines that must
be called in this order: EPFMAP, EPFALLC, EPF$INIT, EPF$INVK. Refer
to the Advanced Programmer's Guide for more information on program and
library EPFs.

The EPF must be mapped to memory in order to be executed. The user
code that calls EPF$MAP or EPFSRUN (described later in this chapter)
should be capable of dealing with any error condition that might result
when the EPF is invoked.

If an error occurs while attempting to allocate dynamic memory space
for the EPF or if the user's command environment becomes corrupted, an
error message will be displayed at the users's terminal and the user's
command environment will be reinitialized.

If an error occurs during some manipulation of the in-memory list of
EPFs (for example, a circular list is detected), an error message is
displayed and the user's command environment is reinitialized.

The following error codes may be returned to the caller of EPF$MAP:

E$NMVS Insufficient VMFA segments available for EPF mapping.

Caller must either wait until some VMFA segments are
returned to the free pool, (by this user or by
others), or request that the system be re-configured
to allow the caller more VMFA segments.

First Edition 5-16

EPF$MAP EPF MANAGEMENT

E$NMTS Insufficent user segments for copying EPF to memory
from a remote node or using the K$COPY key.

E$ROOM Insufficient dynamic storage is available.

In response to any of these three messages, the user
can release temporary segments in these ways:

• Reentering a suspended subsystem via the REENTER
command

• Deactivating previous EPF invocations via the
REMEPF command

• Releasing command levels via the RELEASE_LEVEL
command

• Reinitializing the command environment via the ICE
command (as a last resort)

E$NRIT User has insufficient access rights to the EPF file.

E$BKEY Invalid key value was specified for EPF$MAP.

E$BUNT The specified unit number is invalid.

E$UNOP File no longer open on specified file unit.

E$NDAM EPF file is not a DAM file, as it must be.

E$NOVA EPF file is not open for VMFA-read, as it must be.

E$FIUS EPF file is currently open for use. The EPF file
cannot be mapped, probably because it is currently
open on a file unit for writing by this or another
user.

E$BDAM EPF DAM file structure has been corrupted.

E$IVWN EPF file contents have been corrupted.

E$EPFT Invalid EPF type was detected. Resubmit the file to
BIND.

E$BVER Invalid EPF version was detected. Resubmit the file
to BIND.

E$EPFL EPF too large to be mapped to memory. EPF$MAP will
return this error if the EPF consists of more than 130
procedure segments.

5-17 First Edition

SUBROUTINES, VOLUME II EPF$MAP

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 5-18

EPF MANAGEMENT

EPF$RUN

EPF$RN is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Combine functions of EPFMAP, EPFALLC, EPF$INIT, and EPF$INVK.

Usage

DCL EPF$RUN ENTRY (FIXED BIN (15), FIXED BIN (15), FIXED BIN (15))

RETURNS (PTR OPTIONS (SHORT));

epf_id = EPF$RUN (key, unit, code)

or
DCL EPF$RUN ENTRY (FIXED BIN(15), FIXED BIN(15),

FIXED BIN(15), CHAR(1024)
1, 2

2
2
2,

1, 2
2

PTR)

CHAR(32) VAR,
FIXED BIN(15),
PTR,
. 3 FIXED BIN(31),
3 FIXED BIN(31),
3 FIXED BIN(31),
3 FIXED BIN(31),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(11),
3 BIT(l),
3 BIT(15),
3 FIXED BIN(15),
3 FIXED BIN(15),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(13),

BIT(l), 2 BIT(l),
BIT(14),

RETURNS (PTR OPTIONS (SH01

VAR, FIXED BIN(15),

*T));

epf_id = EPF$RUN (key, unit, code, com_args, ret_code,
com_state, flags, rtn_function_ptr);

5-19 First Edition

SUBROUTINES, VOLUME II EPF$RUN

Parameters

key

INPUT. Specifies action to be performed. Possible values are:

K$INVK Map, create, allocate and initialize static data
areas, and leave EPF in cache upon completion.

K$INVK_DEL (K$IVD for FTN callers)
Map, allocate and initialize static data areas, invoke
but do not cache EPF after completion.

K$REST Map, allocate and initialize static data areas, but do
not invoke the EPF.

unit

INPUT. File unit on which the EPF is open for VMFA-read.

code

OUTPUT. Standard error code. Possible values include all error
codes returned by EPFMAP, EPFALLC, EPF$INIT, or EPF$DEL.

com_args

INPUT. The command arguments.

ret_code

OUTPUT. Error code returned by invoked EPF.

com_state

INPUT. Contains information relative to the EPF invocation. See
the EPF$INVK subroutine, described earlier in this chapter.

flags

INPUT. This field contains information relative to the command
function invocation. See the EPF$INVK subroutine.

rtn__function_ptr

OUTPUT. Pointer to a return structure used by the EPF when called
as a function. See the EPF$INVK subroutine.

epf_id

RETURNED VALUE. The identifier for the EPF created by a call to
EPF$MAP from the EPF$RUN subroutine. If the EPF is deleted after
its invocation completes, the epf_id is undefined.

First Edition 5-20

EPF$RUN EPF MANAGEMENT

Discussion

This routine performs all the appropriate calls to execute an EPF file.
It maps and allocates the linkage and static data areas, initializes
them, invokes the EPF, and optionally returns the EPF memory resources
to the system free pool. The EPF file must first be opened for a
VMFA-read; that is, you first must call either SRCH$$ or SRSFX$ with
the K$VMR key specified.

Program EPFs written as programs (that is, they expect no command
arguments and return no severity code) are normally invoked with the
first calling sequence shown above. EPFs written as functions, and
those expecting arguments, must be invoked using the second calling
sequence. The additional arguments are provided for passing invocation
information to the program being invoked, and for returning data to the
invoking program.

Refer to the Advanced Programmer's Guide for a full discussion on
calling EPFs from within other programs.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

5-21 First Edition

SUBROUTINES, VOLUME I I

REMEPF$

Purpose

Remove an EPF from a user's address space.

Usage

DCL REMEPF$ ENTRY (FIXED BIN(15), CHAR(*) VAR, FIXED BIN(15));

CALL REMEPF$(key, epf_treename, code);

Parameters

key

INPUT. Force-delete indicator. Possible values are:

K$FRC_DEL
Forcibly remove if process-class library EPF is
initialized.

K$NO_FRC_DEL
Do not forcibly remove if process-class library EPF is
initialized.

epf_treename

INPUT. Pathname of the EPF to be removed.

code

OUTPUT. Standard error code. Possible values are:

E$BPAR Invalid key specified.

E$NTA EPF not active for this user.

E$SWPR EPF suspended in this user's process.

E$ILTE Invalid EPF LTE linkage descriptor.

E$ILTD Invalid EPF LTD linkage descriptor.

First Edition 5-22

REMEPF$ EPF MANAGEMENT

Discussion

The REMEPF$ call removes either a program EPF or a library EPF from the
user's address space. If the EPF is a process-class library EPF, all
existing links to it from other process-class library EPFs are
unsnapped.

The EPF to be removed must have a name that ends in either the .RUN or
the .RPn suffix, where n is a decimal digit. Refer to the RPL$
subroutine, later in this chapter, for a discussion of the use of the
RPn convention.

Several error conditions internal to EPF handling may result in the
display to the user's terminal of error messages other than the
standard PRIMOS messages given above. These errors are all considered
fatal to any further processing, and result in reinitialization of the
user's command environment.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

5-23 First Edition

SUBROUTINES, VOLUME II

RPL$

Purpose

Replace one EPF runfile with another.

Usage

DCL RPL$ ENTRY (CHAR(128) VAR, CHAR(128) VAR, CHAR(128) VAR,
BIT(l) ALIGNED, FIXED BIN(15));

CALL RPL$ (source_path, target_path, rpl_path, no_query, code);

Parameters

source_path

INPUT. Pathname of the file containing the code to be used in the
new .RUN file.

target_path

INPUT. Pathname of the new .RUN file

rpl_path

OUTPUT. Pathname of the old .RUN file, which is now a .RPn file if
it is currently in use; otherwise, a null string.

no_query

INPUT. If this bit is set, no query for changing the file name
will prompt the user, and no messages are displayed. If it is
unspecified by the user, the routine defaults to query displays.

code

OUTPUT. Standard error code. Possible values are:

-1 Returned as a warning if at least one RPn file exists
and is not in use.

Other standard error codes may be returned from subroutines called
internally by RPL$. Refer to the Advanced Programmer's Guide for
explanations of these codes if they should be returned.

First Edition 5-24

RPL$ EPF MANAGEMENT

Discussion

The RPL$ subroutine allows the replacement of one EPP file with another
one. By definition, therefore, the file to be replaced must be a DAM
file with the suffix .RUN. If the file to be replaced is currently in
use (such as an EPF library being accessed by users), it remains in use
but has its suffix changed from .RUN to .RPn, where n is a decimal
integer from 0 through 9. RPL$ replaces the old EPF file with this new
.RUN file, but the .RPn file continues to exist. Users who try to
access the new EPF file are linked to the new .RUN file; they may
later delete or save the old version.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

5-25 First Edition

6
Command Environment

User programs written in any language can make extensive use of the
facilities provided by the PRIMOS command processor, including the
ability to call other programs from within executing programs, to set
and retrieve local and global variables/ and to retrieve some of the
characteristics of the user's command environment.

This chapter describes the group of subroutines that support user
programs in their interaction with the PRIMOS command environment.
Additional information on programming for the use of the command
processor facilities can be found in Volume III of the Advanced
Programmers Guide.

6-1 First Edition

SUBROUTINES, VOLUME II

The following subroutines, their declarations, and their calling
sequences are described in this chapter:

CE$BRD Return caller's maximum command environment breadth.

CE$DPT Return caller's maximum command environment depth.

CL$PIX Parse command arguments according to a character string
"picture" of the command line.

CP$ Invoke a command from a running program.

GV$GET Retrieve the value of a global variable.

GV$SET Set the value of a global variable.

LIST$CMD Return a list of commands valid at mini-command level.

LV$GET Retrieve the value of a CPL local variable.

LV$SET Set the value of a CPL local variable.

RD$CE_DP Returns caller's current command environment depth.

First Edition 6-2

COMMAND ENVIRONMENT

CE$BRD

Purpose

Return caller's maximum command environment breadth.

Usage

DCL CE$BRD ENTRY () RETURNS (FIXED BIN(15));

max_ce_brdth = CE$BRD();

Parameters

max_ce_brdth

RETURNED VALUE. Maximum number of simultaneous program EPF
invocations permitted per command level.

^ Discussion

The CE$BRD subroutine is one of several that retrieve EPF-related
information from the in-memory copy of the current user's profile.
This routine returns the maximum number of simultaneous program EPF
invocations per command level; that is, the command environment
breadth allocated to the calling user. The command environment breadth
is set on a per-user basis by the System Administrator.

The value returned is the same as that displayed when the LIST_LIMITS
command is invoked from PRIMOS command level.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-3 First Edition

SUBROUTINES, VOLUME I I

CE$DPT

Purpose

Return caller's maximum command environment depth.

Usage

DCL CE$DPT ENTRY () RETURNS (FIXED BIN<15));

max_ce_dpth = CE$DPT();

Parameters

max_ce_dpth

RETURNED VALUE. Maximum number of command levels permitted.

Discussion

The CE$DPT subroutine is one of several that retrieve EPP-related
information from the in-memory copy of the current user's, profile.
This routine returns the Maximum number of command levels permitted;
that is, the command environment depth allocated to the user. The
command environment depth is set on a per-user basis by the System
Administrator.

The value returned is the same as that displayed when the LIST—LIMITS
command is invoked from command level.

Loading and Linking; Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPPTNLB.

R-mode: Not available.

First Edition 6-4

COMMAND ENVIRONMENT

CL$PIX

Purpose

Parse command arguments according to a character string "picture" of
the command line.

Usage

DCL CL$PIX ENTRY (BIT(16) ALIGNED, CHAR(*)VAR, PTR, FIXED BIN,
CHAR(*)VAR, PTR, FIXED BIN, FIXED BIN,
FIXED BIN, PTR);

CALL CL$PIX (keys, caller_name, picture^ptr, pixel_size,
com_args, struc_ptr, pix_index, bad_index,
non_std_code, local_vars_ptr);

Parameters

keys

INPUT. A 16-bit structure containing bits set to control certain
details of processing. The structure can be defined in any
language as a 16-bit integer whose value is determined by setting
the desired bits on. (See How to Set Bits in Arguments in Chapter
1.)

The PL/I data description for this structure is:

1 keys,
2 debug bit(1)
2 mbz bit(11), /* must be 'O'b — 11 bits */
2 keep_quotes bit(l),
2 cpl_flag bit(l),
2 pll_flag bit(l),
2 no_print bit(l);

If debug is 'l'b, CL$PIX displays on the terminal a dump of the
parsed argument picture. This is of limited use for most
applications programs.

If keep_quotes is 'l'b, CL$PIX does not strip quotes from parsed
string arguments; otherwise, it removes one layer of quotes. This
flag is ignored in CPL mode, and quotes are never stripped.

6-5 First Edition

SUBROUTINES, VOLUME II CL$PIX

If cpl_flag is 'l'b, CL$PIX operates in CPL mode; otherwise, it
operates in normal mode. These modes are explained in detail in
Appendix C.

If pll_flag is 'l'b, the presence of control arguments in the
output structure is indicated by the PL/1 data type "bit(l)
aligned". If pll_flaq is 'O'b, the FORTRAN data type LOGICAL is
used.

If no_print is 'l'b, no error messages are printed by CL$PIX; only
error code information is returned. If no__print is 'O'b,
caller__name is used to format the error message.

caller_name

INPUT. Name of the calling routine, which formats error messages
if no_print is 'O'b.

picture_ptr

INPUT. Pointer to a varying character string containing the
command argument picture. If dimensioned, the array must be
connected (contiguous). The syntax and semantics of the picture
are defined in Appendix C.

pixel_size

INPUT. Maximum length in characters of the element(s) of the
object pointed to by picture_ptr. This provision allows an
arbitrarily large array of strings to be passed and circumvents
compiler restrictions on character-string length.

com_args

INPUT. String containing the command arguments to be parsed. It
is not necessary to translate this string to uppercase only, or do
any other preprocessing on it. All syntactic conventions of the
PRIMOS Command Language, including the "/*" comment delimiter, are
supported.

struc_ptr

INPUT -> OUTPUT. A pointer to an output structure whose members
will be filled in with the results of a valid picture parse of the
supplied command arguments. (This argument is used only in normal
mode; in CPL mode, locaJ vars_ptr determines the destination of
the output of the parse.) The format of this structure is
determined by the components of the picture, and is described in
Appendix C.

First Edition 6-6

CL$PIX COMMAND ENVIRONMENT

pix_index

OUTPUT. Valid only when non_std_code is nonzero. When valid,
pix_index is 0 if the error applies to the command arguments
string, and is i if the error applies to element (pixel) i of the
picture itself. Errors in the picture are fatal in the sense that
no attempt is made to parse the command arguments if the picture
cannot be parsed.

bad_index

OUTPUT. Character index (counting from 1) of the first character
of the token (word or expression) causing the error. The value of
pix_index must be consulted to determine whether bad_index is
relative to the command line arguments or to a pixel of the
picture. bad_index is valid only if non_std_code is nonzero.

non_std_code

OUTPUT. Return code (independent of PRIMOS standard error codes),
which can take on the following values:

0 No error.

1 Null argument group (two successive semicolons) in
picture.

2 Missing or invalid delimiter in picture.

3 Invalid option argument name in picture.

4 Invalid repeat count in picture.

5 Unknown data type name in picture.

6 Implementation error in picture parse.

7 Token longer than 1024 characters in picture.

8 Option arguments precede object arguments in picture.

11 Too many object arguments in command line.

12 Option argument appears in command line that is not
specified in the picture.

13 Object or parameter on command line does not have the
correct format for its data type.

6-7 First Edition

SUBROUTINES, VOLUME II CL$PIX

14 Default value not in proper format in picture.

15 Default value cannot be given for this data type.

16 Too many instances of an option in command line.

17 Default value expression contains an undefined
variable reference or a format error. {CPL mode
only.)

18 Data type UNCL has been given more than once or has
been given for an option argument parameter.

local_vars_ptr

INPUT/OUTPUT. Pointer used only in CPL mode. In this case, it
points to the Local Variable Control Block that identifies the area
to be used to hold the parsed arguments. local_,vars„ptr should be
null if not in CPL mode. See the description of CPL mode in
Appendix C.

Discussion

The caller supplies the command argument picture, the command arguments
to parse, an output structure whose shape corresponds left-to-right
with the picture, and other parameters. CL$PIX parses the picture and,
if the picture is valid, parses the command arguments into the supplied
structure. At that point, the individual arguments have been validated
to be of the correct data type, converted if necessary, and are
accessible to the program in a straightforward manner.

A complete description of CL$PIX parsing syntax and rules is given in
Appendix C.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 6-8

COMMAND ENVIRONMENT

CP$

Purpose

Invoke a command from a running program.

Usage

DCL CP$ ENTRY (CHAR(1024) VAR, FIXED BIN(15), FIXED BIN(15),
1/

2 BIT(l),
2 BIT(l),
2 BIT(14),

PTR, PTR) ;

CALL CP$ (command_line, status, code, command—flags,
local_variable_ptr, rtn_function_ptr) ;

Parameters

c ommand_line

INPUT. Name of the command or program being invoked,

status

OUTPUT. Standard error code from CP$ subroutine execution,

code

OUTPUT. Standard error code from invoked program execution.

c ommand_flags

INPUT. Information relative to invocation as a command function.
It has this format:

1 flags,
2 command_function_call bit(l),
2 no_eval_vbl_fcns bit(l),
2 reserved bit(14);

The first bit, if set, indicates that the program was called as a
command function; the second, if set, indicates that command
function and global variable references are to be passed without

^* modification; the remaining fourteen bits are undefined.

6-9 First Edition

SUBROUTINES, VOLUME II CP$

local_variable_ptr *^%

INPUT. Pointer to local variables allocated during execution, if
this CP$ call is made by a program executed from within a CPL file.

rtn_funct ion_pt r

OUTPUT. Pointer to a return function structure for command
function processing. The return function structure itself has the
following format.

1 rtn_function_structure,
2 version fixed bin(15),
2 char_string char(*) var;

Refer to the discussion of this and other parts of the interface
structure in the description of the ALC$RA subroutine in Volume III of
the Subroutines Reference Guide.

Discussion

The CP$ subroutine should be called whenever a user wants to invoke a
command or program from within a running program, and wishes to make
use of the extended command processing features available from the
standard command processor.

For a detailed discussion of the use of CP$ within an EPF-based
environment, refer to Volume III of the Advanced Programmer's Guide.

CP$ provides an easy-to-use interface for calling external programs.
All a programmer has to do is call CP$ with an argument that represents
a command line. This command line is a character string representation
of the external program to be called. CP$ performs all wildcard,
treewalk, and iteration processing specified by the character string;
it does not, however, perform abbreviation expansion.

For example, a user may have a purchasing program that allows several
different commands, each of which calls an external program that can be
called by CP$. If the purchasing program prompts the user to insert a
command-line, the user inputs something like "ORDER wrench" (or the
longer form shown below). ORDER is the name of the external program
that does the ordering. Part of the purchasing program would therefore
resemble the following:

First Edition 6-10

CP$ COMMAND ENVIRONMENT

/* At this point the user is prompted to input a command. */
/* The user now wants to "ORDER wrench". But, unless ORDER */
/* is in the system's command directory CMDNCO, the RESUME */
/* command must be added to execute ORDER, which could */
/* be one of several programs within a subdirectory */
/* called PROGS: "RESUME PROGS>ORDER wrench." */

/* The subroutine cl$get is called to gather the terminal input. */

CALL CL$GET(COMMAND_LINE, COMMAND_LINE_LENGTH, CODE);

/* Now CP$ uses that command_line to fetch */

/* the program that will honor this request. */

CALL CP$('RESUME PROGS>ORDER WRENCH', STATUS, CODE);

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-11 First Edition, Update 1

SUBROUTINES, VOLUME I I

GV$GET

Purpose

Retrieve the value of a global variable.

Usage

DCL GVSGET ENTRY (CHAR(*)VAR, CHAR(*)VAR, FIXED BIN, FIXED BIN);

CALL GV$GET (var_name, var_value, value_size, code);

Parameters

var_name

INPUT. Name of the global variable whose value is to be retrieved.

var_value

OUTPUT. Returned value of variable var_name•

value_size

INPUT. The length of the user's buffer var_value in characters,

code

OUTPUT. Standard error code. Possible values are:

E$BFTS The user buffer var_value is too small to hold the

current value of the variable. The value of the
variable can be up to 1024 characters long, or, if
numeric, can be between -2**31+1 and 2**31-1,
inclusive.

E$UNOP The global variable storage file is not open or is in
invalid format.

E$FNTF The variable is not found.

E$BNAM The variable name must be preceded by a period.

First Edition, Upde.te 1 6-12

GV$GET COMMAND ENVIRONMENT

Discussion

The PRIMOS command DEFINE_GVAR must be used to define the global
variable file before this subroutine is called.

The name supplied in var_name must follow the rules for CPL global
variable names and must be in uppercase. It must exist in the global
variable file last invoked with DEFINE_GVAR.

Refer to the CPL User's Guide or the Prime User's Guide for information
on global variable usage and naming rules.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-13 First Edition, Update 1

SUBROUTINES, VOLUME II

GV$SET

Purpose

Set the value of a global variable.

Usage

DCL GV$SET ENTRY (CHAR(*)VAR, CHAR(*)VAR/ FIXED BIN);

CALL GV$SET (var_name, var_value, code);

Parameters

var_jiame

INPUT. Name of the global variable to be set.

var_value

INPUT. New value of the variable var__name.

code

OUTPUT. Standard error code. Possible values are:

E$BFTS The specified value is too big. The value of the
variable can be up to 1024 characters long, or, if
numeric, can be an integer between -2**31 and
2**31 - 1, inclusive.

E$UN0P The global variable file is invalid or not open.

E$ROOM An attempt by the variable management routines to
acquire more storage fails.

E$BNAM The variable name must be preceded by a period.

Discussion

The PRIMOS command DEFINE_GVAR must be used to define the global
variable file before this subroutine is called.

The name supplied in var_name must follow the rules for CPL global
variable names and must be in uppercase. The variable name and its new
value are placed in the global variable file last invoked with

First Edition, Update 1 6-14

GV$SET COMMAND ENVIRONMENT

DEFINE_GVAR. If the name already exists in the file, its value is
overlaid by the new value.

Refer to the CPL User's Guide or the Prime User's Guide for information
on global variable usage and naming rules.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-15 First Edition, Update 1

SUBROUTINES, VOLUME I I

LIST$CMD

Purpose

Return a list of commands valid at mini-command level.

Usage

DCL LIST$CMD ENTRY (CHAR(32) VAR,
1 ,

2 BIN(15) ,
2 BIN(15) ,
2 BIT(l) ALIGNED,

FIXED BIN(15));

CALL LIST$CMD (wildcard_match, print_opts, code);

Parameters

wildcard_jnatch

INPUT. Wildcard character string that determines the subset of
commands to be included in the list. Any matches found are
returned herein.

print_opts

INPUT. Options to control list format, specified in the structure
described in the Discussion section.

code

OUTPUT. Standard error code.

Discussion

The LIST$CMD subroutine displays to a user's terminal those mini-level
commands qualified by a wildcard character string match. The command
mini-level is explained in the Prime User's Guide and the Programmer's
Guide to BIND and EPFs.

wildcarcLmatch is a character string that is used as a pattern match
for mini-level commands to be listed. The character string can contain
wildcard characters. If you do not specify wildcard-match, LIST$CMD
displays the names of all the PRIMOS commands that you can use at
mini-command level.

First Edition, Update 1 6-16

LIST$CMD COMMAND ENVIRONMENT

The format in which the mini-level commands are displayed is controlled
by print_opts. The number of lines per screen, the number of
characters per line, and the presence or absence of a full-screen
prompt are specified in the structure shown below.

1 print_opts,
2 11 bin(15), /* max. line length (characters) */
2 pi bin(15), /* max. page length (lines) */
2 nw bit(l) aligned, /* ' l'b if no "More—" prompt */

The value of 11 determines how many commands can be shown on each line
of the display. The default value is 80 characters. The value of pi
must be at least 4 in order to display a header line and at least one
line of commands on one screenful. The default value is 24 lines. The
standard PRIMOS "More—" prompt, which accepts the usual YES, NO, QUIT,
or carriage return, is displayed if the value of nw is given as ' 0'b.

If the wildcard string submitted is invalid, an error code such as
E$FDMM (format/data mismatch) is returned. If a valid string does not
elicit a single match, E$FNTF (file not found) is returned.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-17 First Edition

SUBROUTINES, VOLUME I I

LV$GET

Purpose

Retrieve the value of a CPL local variable.

Usage

DCL LV$GET ENTRY (PTR, CHAR(32) VAR, CHAR(*) VAR,
FIXED BIN(15), FIXED BIN(15));

CALL LV$GET (vcb_j?tr, var_name, var_value, var_size, code) ;

Parameters

vcb_ptr

INPUT. Pointer to the block of local variables for the CPL
program.

var_name

INPUT. Name of the variable in the CPL program. 1

var_value

OUTPUT. Value of the CPL variable.

var_size

INPUT. Maximum length in characters of the user buffer var_value.

code

OUTPUT. Standard error code.

Discussion

The LV$GET subroutine is used by CPL programs to retrieve the value of
a local variable when the [GET_VAR] command function is invoked. It
can also be used by user programs called from within CPL programs to
perform the same function.

First Edition 6-18

LV$GET COMMAND ENVIRONMENT

The caller supplies in vcb_ptr a pointer to the first (or only)
variable control block (VCB), which is formatted as described for the
LV$SET subroutine, later in this chapter.

The name supplied in var_name must follow the rules for CPL local
variable names and must be in uppercase.

The current value of the local variable is returned to the calling
program in var_value. The number of characters returned is either the
actual number of characters in the value or the number specified in
var_size, whichever is smaller. If the number of characters in the
value is greater than that specified in var_size/ the first var_size
characters of the value are returned. In this case code indicates that
the buffer size is too small.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

/^^

6-19 First Edition

SUBROUTINES, VOLUME I I

LV$SET

Purpose

Set the value of a CPL local variable.

Usage

DCL LV$SET ENTRY (PTR, CHAR(32) VARr
CHAR(*) VAR, FIXED BIN<15));

CALL LV$SET (vcb_ptr , var_jiame, va r_va lue , code) ;

Parameters

vcb_ptr

INPUT. Pointer to the local variable block for the CPL program.

var_name

INPUT. Name of the local variable in the CPL program.

var_value

INPUT. Value to be assigned to the CPL local variable,

code

OUTPUT. Standard error code.

Discussion

The LV$SET subroutine is used by CPL programs to set the value of a
local variable when the [SET_VAR] command function is invoked. It can
also be used by user programs called from within CPL programs to
perform the same function.

First Edition 6-20

LV$SET COMMAND ENVIRONMENT

The caller passes to LV$SET in vcb_ptr a pointer to the first variable
control block (VCB), which has the format shown below.

del 1 vcb based, /* Variable Manager Control Block */
2 next_vcb ptrf /* forward link in list of veb's */
2 this_area ptr, /* ptr to area with this vcb */
2 var_chain ptr; /* start of var list (only in 1st vcb) */

Each variable in the variable storage area is represented by the
structure shown below.

del 1 vh based, /* Variable Header */
2 next ptr, /* forward link in list */
2 value ptr, /* ptr to char(n) var value */
2 value_area ptr, /* ptr to value allocation area */
2 value_size fixed bin, /* capacity of value in chars */
2 reserved(3) fixed bin,
2 name char(32) var; /* name of variable being set */

The structures shown above are created and maintained by the variable
manager when variables are defined. If the variable manager runs out
of space in the current variable storage area, it attempts to allocate
more space; if the attempt is unsuccessful, an error code is returned,
indicating that there is no more room available.

The name supplied in var_name must follow the rules for CPL local
variable names and must be in uppercase. The value supplied in
var_value can be up to 1024 characters long.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-21 First Edition

SUBROUTINES, VOLUME I I

RD$CE DP

RD$CED is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Returns caller's current command environment depth.

Usage

DCL RD$CE_DP ENTRY (FIXED BIN);

CALL RD$CE__DP (com_env_dpth>;

Parameters

com_env_dpth

OUTPUT. The current depth of the command environment.

Discussion

The RD$CE_DP subroutine is one of several that retrieve EPF-related
information from the in-memory copy of the current user's profile.
This routine returns the command level depth at which the user is
currently operating.

The maximum command environment depth is set on a per-user basis by the
System Administrator. The user can retrieve this maximum for
comparison with the current depth by using the CE$DPT subroutine,
described earlier in this chapter, or by invoking the LIST_LIMITS
command from PRIMOS command level.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition 6-22

7
Search Rule
Subroutines

The PRIMOS search rules facility enables you to set sequential search
lists that PRIMOS uses to locate file system objects. The search rules
facility is described in the Advanced Programmer's Guide, Volume II.
The subroutines described here permit you to read and modify these
search lists, and to use search lists to locate and open file system
objects.

Most search rule subroutines can be invoked by either their full name
or a six-character synonym name. A list of the subroutines described
in this chapter follows.

7-1 First Edition, Update 1

SUBROUTINES, VOLUME II

Routine Function

OPSR$ Locates a file using a search list and opens the
file. Creates a file if the file sought does not
exist.

OPSRS$ Locates a file using a search list and a list of
suffixes. Opens the located file, or creates a
file if the file sought does not exist.

SR$ABSDS Disables an optional search rule. Used to disable
rules that have been enabled using SR$ENABL.
SR$ABSDS absolutely disables an enabled rule,
regardless of how many times the rule has been
enabled. Compare with SR$DSABL.

SR$ADDB Adds a rule to the beginning of a search list or
before a specified rule.

SR$ADDE Adds a rule to the end of a search list or after a
specified rule.

SR$CREAT Creates a search list.

SR$DEL Deletes a search list.

SR$DSABL Disables an optional search rule. Used to disable
rules that have been enabled using SR$ENABL.
SR$DSABL disables a single SR$ENABL operation.
Compare with SR$ABSDS.

SR$ENABL Enables an optional search rule. Enabled rules can
be disabled using SR$DSABL or SR$ABSDS.

SR$EXSTR Determines if a search rule exists.

SR$FR_LS Frees list structure space allocated by SR$LIST or
SR$READ.

SR$INIT Initializes all search lists to system defaults.

SR$LIST Returns the names of all defined search lists.

SR$NEXTR Reads the next rule from a search list.

SR$READ Reads all of the rules in a search list.

SR$REM Removes a search rule from a search list.

SR$SETL Sets the locator pointer for a search rule.

SR$SSR Sets a search list using a user-defined search
rules file.

First Edition, Update 1 7-2

SEARCH RULES

Some PRIMOS search rule subroutines require data types not available in
all languages. All search rule subroutines can be executed using PL/I.
All subroutine arguments are mandatory. Most arguments, such as
list_name, are case-insensitive. However, arguments that compare a
search rules value to an existing search rule are case-sensitive.
Arguments cannot perform wildcard operations.

7-3 First Edition, Update 1

SUBROUTINES, VOLUME I I

OPSR$

Purpose

Locate a file using a search list and open the file. OPSR$ can also be
used to create a file if the file sought does not exist.

Usage

DCL OPSR$ ENTRY(CHAR(32) VAR, CHAR(128) VAR,
FIXED BIN, FIXED BIN,
CHAR(128) VAR, FIXED BIN,
FIXED BIN, CHAR(128) VAR,
FIXED BIN);

CALL OPSR$ (list_name, referencing_dir,
valid_types, action+newfile+getu,
object_name, funit,
type, found_path,
code);

Parameters

list_name

INPUT. The name of the search list that OPSR$ should use to locate
the desired file. If you set list_name to null, OPSR$ treats the
object—name as a full pathname.

referencing_dir

INPUT. A search rule to substitute for the [referencing_dir]
keywords in the search list. You establish either a search rules
string or a null value for this argument. The search rule you
specify here is temporarily substituted into the search list; then
the search operation is performed on this search list. This
substitute value is only kept for the duration of the subroutine
call. If this argument is set to the null value, search rules
containing the [referencing_dir] keyword are skipped over during
the search operation.

First Edition, Update 1 7-4

OPSR$ SEARCH RULES

valid_types

INPUT. Type of file system object to be located,
values are permitted:

The following

K$UNKN Unknown file type, any file system object acceptable.

K$ACAT Access categories (ACATs) only. OPSR$ can only verify
the existence of an ACAT; OPSR$ does not open ACATs.

K$FILE Files only.

K$SDIR Segment directories only.

K$DIR Directories only.

You can concatenate multiple valicLtypes options using a plus sign
(+). For example, K$FILE+K$DIR can open either a file or a
directory.

action

INPUT. Type of action to perform on the file system object when
located. The following values are permitted:

K$EXST

K$READ

K$WRIT

K$RDWR

Verify existence of object_name
value permitted for ACATs.

This is the only

Open object_name for reading.
4i

Open object_name for writing.

Open object_name for update (reading and writing)

newfile

INPUT. If you are creating a new file, specify an action of K$WRIT
or K$RDWR and then use newfile to specify the type of file you want
to create. To specify newfile, use a plus sign (+) to concatenate
the action argument with one of the following:

K$NSAM New sequential access (SAM) file

K$NDAM New direct access (DAM) file

K$NSGS New sequential access (SAM) segment directory

K$NSGD New direct access (DAM) segment directory

For example, to create a DAM file, you might specify K$WRIT+K$NDAM.
newfile is an optional argument. If you do not specify newfile and
circumstances permit OPSR$ to create a new file, it creates a SAM
file.

7-5 First Edition, Update 1

SUBROUTINES, VOLUME II OPSR$

getu

INPUT. If you wish PRIMOS to automatically select the file unit
number, use a plus sign to concatenate K$GETU to the action
argument or the newfile argument (for example, K$WRIT+K$NDAM+
K$GETU) . The getu argument is optional. If you omit getu, you
must specify the file unit number using the funit argument.

object_name

INPUT. The name of the file system object for which you are
searching. object_name can be either an objectname or a full
pathname. If you supply an objectname, OPSR$ performs a search
using list_name. If you supply a full pathname, OPSR$ locates the
file system object without using list_name.

funit

INPUT. The file unit number that you wish to use for opening the
file.

OUTPUT. If you specify a value of K$GETU in the getu argument,
PRIMOS automatically assigns a file unit number to the file. The
funit argument is then used to return the file unit number assigned
by PRIMOS.

type

OUTPUT. The type of the object that OPSR$ successfully opened.
Possible values are as follows:

0 SAM file

1 DAM file

2 SAM segment directory

3 DAM segment directory

4 UFD top-level directory or subdirectory

found_path

OUTPUT. The absolute pathname of the file successfully opened,

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$UIUS The file has already been opened.

E$NRIT You do not have read access rights to a file.

First Edition, Update 1 7-6

OPSR$ SEARCH RULES

E$FNTP The requested file cannot be located.

E$LIST The search list specified cannot be located.

Discussion

OPSR$ is normally used to locate a file using a search list and then
open the file. To use OPSR$ in this way, supply the filename to the
object__name argument and the search list name to list_name argument.

OPSR$ can also be used to open a file without using a search list. To
use OPSR$ in this way, supply the full pathname of the file to the
object_name argument and a null value to list_name. A full pathname
may include or omit the disk partition name. PRIMOS supplies an
omitted partition name from the ATTACH$ search list (if one exists) or
from the list of attached disks. Refer to the Advanced Programmer's
Guide, Volume II for further details on this use of ATTACH$.

OPSR$ can be used to create a new file, if no file of that name exists.
To create a new file, you must set the action argument to K$WRIT or
K$RDWR, and OPSR$ must have sufficient information to determine where
to create the file. For OPSR$ to create a file, either the object—name
argument must contain the full pathname of the file, or the object_name
argument must contain the name of the file and the list_name argument
must be set to null. If object_name is a filename and list_name is
null, OPSR$ creates the new file in the currently attached directory.
The type of file created is determined by the value of the newfile
argument. If you did not specify newfile, OPSR$ creates a SAM file.

The SRCH$$ subroutine can also be used to locate and open files.
SRCH$$ has additional file access features not found in OPSR$;
however, SRCH$$ cannot use the search rules facility to locate file
system objects. If you wish to search for a file using both the search
rules facility and a list of suffixes, use the OPSRS$ subroutine.

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples locates and opens the file TESTFILE, using the MYLIST search
list. Each example first inserts the search rule MYDIR>TOOLS into
MYLIST at the location specified by [referencing_dir], and then
searches MYLIST. TESTFILE may be a file or a segment directory. When
OPSR$ locates TESTFILE, it opens it for update.

7-7 First Edition, Update 1

SUBROUTINES, VOLUME II OPSR$

/* Sample PL/I program for the OPSR$ subroutine */
OPEN_PROG: PROCEDURE; ^
%INCLUDE 'SYSCOM>KEYS.PLl' ;
DCL OPSR$ ENTRY(CHAR(32) VAR, CHAR(128) VAR,

FIXED BIN, FIXED BIN,
CHAR(128) VAR, FIXED BIN,
FIXED BIN, CHAR(128) VAR,
FIXED BIN) ;

DCL LIST CHAR(32) VAR STATIC INIT('MYLIST');
DCL REF CHAR(128) VAR STATIC INIT('MYDIRXTOOLS');
DCL V_TYPE FIXED BIN;
DCL KEYS FIXED BIN;
DCL OBJNAME CHAR(128) VAR STATIC INIT('TESTFILE');
DCL FUNIT FIXED BIN STATIC INIT ('3');
DCL TYPE FIXED BIN;
DCL FOUND CHAR(128) VAR;
DCL CODE FIXED BIN;
CALL OPSR$ (LIST, REF, K$FILE+K$SDIR, K$RDWR,

OBJNAME, FUNIT, TYPE, FOUND, CODE);
IF (CODE - 0)
THEN

PUT SKIP LIST('File successfully opened: ', FOUND);
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END;

C Sample FORTRAN 77 program for the OPSR$ subroutine
$INSERT SYSCOM>KEYS.INS.FTN
C Declarations

INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 REFSIZE, REFPLUS(128)
CHARACTER*128 REF
INTEGER*2 V_TYPE
INTEGER*2 KEYS
INTEGER*2 OBJSIZE, OBJPLUS(128)
CHARACTER*128 OBJNAME
INTEGER*2 FUNIT
INTEGER*2 TYPE
INTEGER*2 FSIZE, FPLUS(128)
CHARACTER*128 FOUND
INTEGER*2 CODE

C Record equivalences
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)
EQUIVALENCE (REFSIZE, REFPLUS(l))
EQUIVALENCE (REFPLUS(2), REF)
EQUIVALENCE (OBJSIZE, OBJPLUS(D)
EQUIVALENCE (OBJPLUS(2), OBJNAME)
EQUIVALENCE (FSIZE, FPLUS(l))
EQUIVALENCE (FPLUS(2), FOUND)

First Edition, Update 1 7-8

OPSR$ SEARCH RULES

C Assignments
LIST(1:6) - 'MYLIST'
LSIZE = 6
REF(1:12) = 'MYDIR>TOOLS'
REFSIZE = 12
FUNIT = 3
0BJNAME(1:8) = 'TESTFILE'
OBJSIZE = 8
FOUND = "

C Subroutine call
CALL OPSR$(LPLUS, RPLUS, K$FILE+K$SDIR, K$RDWR,
* OBJPLUS, FUNIT, TYPE, FPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'File successfully opened: ', FOUND(1:FSIZE)
CALL EXIT

C Error routine
10 PRINT *, 'Error code: ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-9 First Edition, Update 1

SUBROUTINES, VOLUME II

OPSRS$

Purpose

Locate and open a file using a search list and a list of suffixes.
OPSRS$ can also be used to create and open a file if the file sought
does not exist. This subroutine is an extension of OPSR$. It provides
support for suffix list checking in addition to the search rules
support of OPSR$.

Usage

DCL OPSRS$ ENTRY (CHAR(32) VAR,
FIXED BIN,
CHAR(128) VAR,
FIXED BIN,
PTR,
FIXED BIN,
FIXED BIN);

CHAR(128) VAR,
FIXED BIN,
FIXED BIN,
FIXED BIN,
CHAR(32) VAR,
CHAR(128) VAR,

CALL OPSRS$ (list_name, referencing_dir,
valid_types, action+newfile+getu,
object_name, funit,
type, n_suffixes,
suffix_list_ptr, basename,
suffix_used, found_path,
code);

Parameters

list_name

INPUT. The name of the search list that PRIMOS should use to
locate the desired file. If you set list_name to null, OPSRS$
treats the object_name as a full pathname.

referencing_dir

INPUT. A search rule to substitute for the [referencing_dir]
keywords in the search list. You establish either a search rules
string or a null value for this argument. The search rule you
specify here is substituted into the search list; then the search
operation is performed on this modified search list. If you set
this argument to the null value, search rules containing the
[referencing_dir] keyword are skipped over during the search
operation.

First Edition, Update 1 7-10

OPSRS$ SEARCH RULES

valid_types

INPUT. Type of file system object to be located,
values are permitted:

The following

K$UNKN Unknown file type, any file system object acceptable.

K$ACAT Access categories only. OPSRS$ can only verify the
existence of an ACAT; OPSRS$ does not open ACATs.

KSFILE Files only.

KSSDIR Segment directories only.

K$DIR Directories only.

You can concatenate multiple valid_types options using a plus sign
(+). For example, K$FILE+K$DIR can open either a file or a
directory.

action

INPUT. Type of action to perform on file system object when
located. The following values are permitted:

K$EXST

K$READ

K$WRIT

K$RDWR

Verify existence of object_name.
value permitted for ACATs.

This is the only

Open object_name for reading.

Open object_name for writing.

Open object_name for update (reading and writing)

newfile

If you are creating a new file, use action to specify either K$WRIT
or K$RDWR and then use newfile to specify what type of file to
create. To specify newfile, use a plus sign (+) to concatenate the
action argument with one of the following:

K$NSAM New sequential access (SAM) file

K$NDAM New direct access (DAM) file

K$NSGS New sequential access (SAM) segment directory

K$NSGD New direct access (DAM) segment directory

For example, to create a DAM file you might specify K$WRIT+K$NDAM.
newfile is an optional argument. If you do not specify newfile,
PRIMOS creates a SAM file.

7-11 First Edition, Update 1

SUBROUTINES, VOLUME II OPSRS$

getu

If you wish PRIMOS to automatically select the file unit number,
use a plus sign to concatenate K$GETU to the action argument or the
newfile argument (for example, K$WRIT+K$NDAM+K$GETU). getu is an
optional argument. If you do not specify getu, you must specify
the file unit number using the funit argument.

object_name

INPUT. The name of the file system object for which you are
searching. This name does not have to include the filename suffix.
object_name can be a objectname or a full pathname. If you supply
an objectname, OPSRS$ uses the search rules facility to perform a
search using the list_name and a list of suffixes. If you supply a
full pathname, OPSRS$ uses the list of suffixes to locate the file
without using list_name.

funit

INPUT. The file unit number that you wish to use for opening the
file.

OUTPUT. If you specify a value of K$GETU in the getu argument,
PRIMOS automatically assigns a file unit number to the file. In
that case, OPSRS$ uses funit to return the file unit number
assigned by PRIMOS.

type

OUTPUT. The type of the object that OPSRS$ successfully accessed.
Possible values are as follows:

0 SAM file

1 DAM file

2 SAM segment directory

3 DAM segment directory

4 UFD top-level directory or subdirectory

n_suffixes

INPUT. The number of suffixes in the suffix list. Each suffix is
an element in an array pointed to by the suffix_list_ptr. Set
n_suffixes to 0 if no suffix checking is desired.

suffix_list_ptr

INPUT. A pointer to an array that contains a list of suffixes.

First Edition, Update 1 7-12

OPSRS$ SEARCH RULES

basename

OUTPUT. The filename of the successfully accessed file. The
basename does not include the suffix (if any) of the filename.

suffix_used

OUTPUT. The sequence number of the suffix used to locate the file.
The suffixes listed in the array are assigned sequential numbers,
beginning with 1. A suffix_used value of 0 indicates that the file
located had no suffix.

found_path

OUTPUT. The absolute pathname of the successfully opened file.

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$UIUS The file has already been opened.

E$NRIT You do not have read access rights to a file.

E$FNTF The requested file cannot be located.

E$LIST The search list specified cannot be located.

Discussion

OPSRS$ performs all of the operations performed by OPSR$. It uses the
search list you specify in list_name to locate and open the file system
object you specify in object_name. However, OPSRS$ does not require
that object_name include the filename suffix. Instead, OPSRS$ uses a
list of suffixes when searching for a file.

OPSRS$ searches each rule in the search list for the specified filename
plus the first listed suffix, then the second suffix, and so on. After
testing a search rule for the combination of object_name and each
suffix in turn, OPSRS$ checks for object_name with no suffix. If
unsuccessful, OPSRS$ proceeds to the next rule in the search list and
repeats this suffix-checking search operation.

If the object_name you supply already has a suffix (such as
MYFILE.RUN), OPSRS$ appends suffixes from the list to ob1ect_name,
creating filenames with multiple suffixes, such as MYFILE.RUN.CPL.
However, OPSRS$ does not append a suffix to an identical suffix (such
as MYFILE.RUN.RUN), but instead tests the object_name (MYFILE.RUN)
without the duplicate suffix.

7-13 First Edition, Update 1

SUBROUTINES, VOLUME II OPSRS$

Creating a Suffix List: Declare a suffix list as an array of elements
pointed to by the suffix_list_ptr. Elements are declared as CHAR(32)
VAR. The number of elements should be equal to the value of the
n_suffixes argument. The n_suffixes argument, not the number of
elements in the array, determines how many suffixes are used for suffix
checking.

Initialize this array with the suffixes to be used for suffix checking.
Each suffix should begin with a period (.). User-defined suffixes,
such as .MYSTUFF, and multiple suffixes, such as .MYSTUFF.CPL, are
permitted.

You can also use the SRSFX$ subroutine to locate and open files using a
suffix list. SRSFX$ has additional file access features not found in
OPSRS$; however, SRSFX$ cannot use the search rules facility to locate
file system objects.

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples locates and opens the file TESTFILE, using the MYLIST search
list and a list of suffixes. Using the suffix list, OPSRS$ locates
either TESTFILE.CPL, TESTFILE.F77 or TESTFILE and opens it for update.

/* Sample PL/I program for the OPSRS$ subroutine */
OPEN_PROG: PROCEDURE;
%INCLUDE 'SYSCOM>KEYS.PL1';
/* Declarations */
DCL OPSRS$ ENTRY(CHAR(32) VAR, CHAR(128) VAR,

FIXED BIN, FIXED BIN,
CHAR(128) VAR, FIXED BIN,
FIXED BIN, FIXED BIN,
PTR, CHAR(32) VAR,
FIXED BIN, CHAR(128) VAR,
FIXED BIN) ;

DCL LIST CHAR(32) VAR STATIC INIT('MYLIST') ;
DCL REF CHAR(128) VAR STATIC INIT(");
DCL V_TYPE FIXED BIN;
DCL KEYS FIXED BIN;
DCL OBJNAME CHAR(128) VAR STATIC INIT('TESTFILE');
DCL FUNIT FIXED BIN STATIC INIT('3');
DCL TYPE FIXED BIN;
DCL N_SUFX FIXED BIN STATIC INIT('2') ;
DCL SUFX_PTR PTR;
DCL BASENAME CHAR(32) VAR;
DCL SUFX_USED FIXED BIN;
DCL FOUND CHAR(128) VAR;
DCL CODE FIXED BIN;
DCL SUFX_LIST(1:2) CHAR(32) VAR STATIC INIT

('.CPL', '.F77');

First Edition, Update 1 7-14

OPSRS$ SEARCH RULES

^ ^ /* Subroutine call */
f^ CALL OPSRS$(LIST, REF, K$FILE, K$RDWR, OBJNAME,

FUNIT, TYPE, N_SUFX, ADDR(SUFX_LIST) , BASENAME,
SUFX_USED, FOUND, CODE);

IF (CODE = 0)
THEN

PUT SKIP LISTCFile successfully opened: ', FOUND);
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END;

C Sample FORTRAN 77 program for the OPSRS$ subroutine
$INSERT SYSCOM>KEYS.INS.FTN
C Declarations of subroutine arguments

INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 REFSIZE, REFPLUS(128)
CHARACTER*128 REF
INTEGER*2 V_TYPE
INTEGER*2 KEYS
INTEGER*2 OBJSIZE, OBJPLUS{128)
CHARACTER*128 OBJNAME
INTEGER*2 FUNIT
INTEGER*2 TYPE
INTEGER*2 N_SUFX
INTEGER*4 SUFX_PTR
INTEGER*2 BSIZE, BPLUS(32)
CHARACTER*32 BASENAME
INTEGER*2 SUFX_USED
CHARACTER*128 FOUND
INTEGER*2 CODE

C Declarations of suffix list '
INTEGER*2 SUFX_LIST(34)
INTEGER*2 LSUFl, LSUF2
CHARACTER*32 SUFI, SUF2
INTEGER*2 FSIZE, FPLUS(128)

C Define equivalences for character type arguments
EQUIVALENCE (LSIZE, LPLUS(1))
EQUIVALENCE (LPLUS(2), LIST)
EQUIVALENCE (REFSIZE, REFPLUS(l))
EQUIVALENCE (REFPLUS(2), REF)
EQUIVALENCE (OBJSIZE, OBJPLUS(1))
EQUIVALENCE (OBJPLUS(2), OBJNAME)
EQUIVALENCE (BSIZE, BPLUS(1))
EQUIVALENCE (BPLUS(2), BASENAME)
EQUIVALENCE (FSIZE, FPLUS(l))
EQUIVALENCE (FPLUS(2), FOUND)

C Define equivalences for suffix list
EQUIVALENCE (LSUFl, SUFX_LIST(1))
EQUIVALENCE (SUFI, SUFX_LIST(2))
EQUIVALENCE (LSUF2, SUFX_LIST(18))
EQUIVALENCE (SUF2, SUFX_LIST(19))

7-15 First Edition, Update 1

SUBROUTINES, VOLUME II OPSRS$

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
REF(1:1) = ' '
REFSIZE - 1
0BJNAME{1:8) = 'TESTFILE'
OBJSIZE = 8
FUNIT « 3
N_SUFX = 2
SUFX_PTR = LOC(SUFX_LIST(l))
FOUND = ''
SUFI(1:4) = '.CPL'
LSUF1 = 4
SUF2(1:4) = '.F77'
LSUF2 = 4

C Subroutine call
CALL OPSRS$(LPLUS, RPLUS, K$FILE, K$RDWR,
* OBJPLUS, FUNIT, TYPE, N_SUFX, SUFX_PTR, BPLUS,
* SUFX_USED, FPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'File successfully opened: ', FOUND(1:FSIZE)
CALL CLOS$A(FUNIT)
CALL EXIT

C Error processing
10 PRINT *, 'Error code: ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 7-16

SEARCH RULES

SR$ABSDS
SR$ABS is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Disable an optional search rule in a specified search list. SR$ABSDS
absolutely disables an enabled rule, regardless of how many times the
rule has been enabled. Compare with SR$DSABL.

Usage

DCL SR$ABSDS EXTERNAL ENTRY(CHAR(128) VAR, CHAR(32) VAR,
FIXED BIN) ;

CALL SRSABSDS(rule, l i s t _name , code) ;

Parameters

r u l e

INPUT. The search rule to be disabled. The rule specified in this
argument should not include the -optional keyword. The rule
specified in this argument should be otherwise identical to the
rule in the corresponding search list. This argument is
case-sensitive.

list_name

INPUT. The name of the search list in which the rule is located,

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded. SR$ABSDS returns 0 even if the
rule was not enabled.

E$LIST Search list does not exist.

E$RULE Search rule cannot be located. Rule may be
non-existent or specified in the wrong case.

E$NTOP Rule specified is not an optional rule.

7-17 First Edition, Update 1

SUBROUTINES, VOLUME II SR$ABSDS

Discussion

An optional search rule is a rule prefaced by the -optional keyword in
the search rules file. Such rules are initially disabled when the
search rules file is used to set the search list. PRIMOS ignores
disabled search rules when performing a search operation. You can
enable an optional search rule using SR$ENABL. SR$DSABL and SR$ABSDS
are used to disable a rule that has been enabled using SR$ENABL.

Both SR$ENABL and SR$DSABL can be invoiced repetitively for the same
search rule. PRIMOS compares the number of calls to SR$ENABL with the
number of calls to SR$DSABL. Each SR$DSABL call disables one
invocation of SR$ENABL; therefore, to disable a rule you must invoke
SR$DSABL as many times as SR$ENABL was called. If you use SR$DSABL to
repeatedly disable a rule, you must invoke SR$ENABL a corresponding
number of times to enable the rule.

SR$ABSDS absolutely disables a search rule. It reverses multiple calls
to either SR$ENABL or SR$DSABL. If a rule is enabled, one invocation
of SR$ABSDS disables the rule, regardless of how many times the rule
had been enabled. If a rule is already disabled, one invocation of
SR$ABSDS reverses any excess disable operations. A rule disabled by
SR$ABSDS can be enabled by a single invocation of SR$ENABL.

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples disables the search rule MYDIR>OPTTESTS in the search list
MYLIST.

/* Sample PL/I program for the SR$ABSDS subroutine */
ABS_SUB: PROCEDURE;
DCL SR$ABSDS EXTERNAL ENTRY(CHAR(128) VAR, CHAR{32) VAR,

FIXED BIN);
DCL RULE CHAR(128) VAR STATIC INIT('MYDIR>OPTTESTS');
DCL LIST CHAR(32> VAR STATIC INIT('MYLIST');
DCL CODE FIXED BIN;
CALL SR$ABSDS(RULE, LIST, CODE);
IF (CODE - 0)
THEN

PUT SKIP LIST('Optional rule disabled');
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END;

First Edition, Update 1 7-18

SR$ABSDS SEARCH RULES

C Sample FORTRAN 77 program for the SR$ABSDS subroutine
C Declarations

INTEGER*2 RULESIZE, RULEPLUS(128)
CHARACTER*128 RULE
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (RULESIZE, RULEPLUS(1))
EQUIVALENCE (RULEPLUS(2), RULE)
EQUIVALENCE (LSIZE, LPLUS(1))
EQUIVALENCE (LPLUS(2), LIST)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
RULE(1:15) = 'MYDIR>OPTTESTS'
RULESIZE = 15

C Subroutine call
CALL SR$ABSDS(RULEPLUS, LPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'Optional rule disabled'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-19 First Edition, Update 1

SUBROUTINES, VOLUME II

SR$ADDB ^
SR$ADB is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Add a search rule before an existing search rule in a search list.
SR$ADDB can also be used to add a rule at the beginning of a search
list.

Usage

DCL SR$ADDB EXTERNAL ENTRY(CHAR(32) VAR, CHAR(128) VAR,
CHAR(128) VAR, FIXED BIN) ;

CALL SR$ADDB(list_name, old_rule, new_rule, code);

Parameters

list_name

INPUT. The name of the search list to which you wish to add a
search rule.

old_rule

INPUT. An existing rule in the search list. SR$ADDB adds new_rule
immediately before the rule specified in this argument. The value
of old_rule must exactly match an existing search rule; this
argument is case-sensitive. The rule specified in this argument
cannot be an administrator rule. To place a search rule at the
beginning of a search list, specify a null string ('') for this
argument.

new_rule

INPUT. The search rule that you wish to add to the search list.
This rule is added immediately before the rule specified in the
old_rule argument. new_rule can be a pathname, an optional search
rule, or a search rule keyword variable, but cannot be a -system or
-insert keyword.

First Edition, Update 1 7-20

SR$ADDB SEARCH RULES

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$BPAR Search rule to be added is invalid, for example,
[garbage].

E$LIST Specified search list does not exist.

E$RULE The rule specified in old_rule cannot be located.
Either the rule does not exist or it was specified in
the wrong case.

E$ADMN Attempting to add a rule before an administrator rule.

Discussion

SR$ADDB is used to add a single search rule before an existing search
rule in a search list. It can also be used to add a single search rule
at the beginning of a search list. To add a single search rule after
an existing rule or at the end of a search list, use SR$ADDE. To
append multiple search rules to an existing search list, use SR$SSR.

SR$ADDB cannot be used to add a rule before an administrator rule. It
also cannot be used to add a rule that inserts multiple rules (such as
the -system or -insert keywords). Use SR$SSR to add an -insert or
-system keyword to an existing search list.

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples adds the search rule [origin_dir] to the beginning of the
MYLIST search list.

/* Sample PL/I program for the SR$ADDB subroutine */
ADD_RULE: PROCEDURE OPTIONS(MAIN) ;
DCL SR$ADDB EXTERNAL ENTRY (CHAR(32) VAR, CHAR(128) VAR,

CHAR(128) VAR, FIXED BIN);
DCL LIST CHAR(32) VARYING STATIC INIT('MYLIST');
DCL ORULE CHAR (12 8) VARYING STATIC INIT(");
DCL NRULE CHAR(128) VARYING STATIC INIT('[ORIGIN_DIR]');
DCL CODE FIXED BIN;
CALL SR$ADDB(LIST, ORULE, NRULE, CODE);
IF (CODE = 0)
THEN

PUT SKIP LISTCRule added to search list');

7-21 First Edition, Update 1

SUBROUTINES, VOLUME II SR$ADDB

ELSE
PUT SKIP LIST('Error code: ', CODE);

PUT SKIP;
END ADD_RULE;

C Sample FORTRAN 77 program for the SR$ADDB subroutine
C Declarations

INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 OSIZE, OPLUS(128)
CHARACTER*128 ORULE
INTEGER*2 NSIZE, NPLUS(128)
CHARACTER*128 NRULE
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (LSIZE, LPLUS(1))
EQUIVALENCE (LPLUS(2), LIST)
EQUIVALENCE (OSIZE, OPLUS(1))
EQUIVALENCE (OPLUS(2), ORULE)
EQUIVALENCE (NSIZE, NPLUS(l))
EQUIVALENCE <NPLUS<2), NRULE)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
ORULE(1:12) = ' '
OSIZE = 12
NRULE(1:12) = ' [ORIGIN_£IR] '
NSIZE = 12

C Subroutine call
CALL SR$ADDB(LPLUS, OPLUS, NPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'Rule added to search list'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 7-22

SEARCH RULES

SR$ADDE
SR$ADE is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Add a search rule to the end of a search list or add a search rule
after a specified rule in a search list.

Usage

DCL SR$ADDE EXTERNAL ENTRY(CHAR(32) VAR, CHAR(128) VAR,
CHAR(128) VAR, FIXED BIN);

CALL SR$ADDE(list_name, old_rule, new_rule, code);

Parameters

list_name

INPUT. The name of the search list to which you wish to add a
search rule.

old_rule

INPUT. An existing rule in the search list. SR$ADDE adds the new
rule immediately after the rule specified in this argument. The
value of this argument must exactly match an existing search rule;
this argument is case-sensitive. The rule specified in this
argument cannot be an administrator rule, unless it is the last
administrator rule in the search list. To place a search rule at
the end of a search list, specify a null string ('') for this
argument.

new_rule

INPUT. The search rule that you wish to add to the search list.
This rule is added immediately after the rule specified in the
old_rule argument. new_rule can be a pathname, an optional search
rule, or an [origin_dir], [home_dir], or [referencing_dir] keyword.
new_rule cannot be a -system or -insert keyword.

7-23 First Edition, Update 1

SUBROUTINES, VOLUME II SR$ADDE

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$BPAR Search rule to be added is invalid, for example,
[garbage].

E$LIST Specified search list does not exist.

E$RULE The search rule specified in old_rule cannot be
located. Either the rule does not exist or it was
specified in the wrong case.

E$ADMN Attempting to add a rule before an administrator rule.

Discussion

SR$ADDE is used to add a single search rule after an existing search
rule in a search list. It can also be used to add a single search rule
at the end of a search list. To add a single search rule before an
existing rule or at the beginning of a search list, use SR$ADDB. To
append multiple search rules to an existing search list, use SR$SSR.
SR$SSR can also be used to add an -insert or -system keyword to an
existing search list.

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples adds the search rule MYDIR>TOOLS immediately after the search
rule [origin_dir] in the MYLIST search list.

/* Sample PL/I program for the SR$ADDE subroutine */
ADD_RULE: PROCEDURE OPTIONS(MAIN);
DCL SR$ADDE EXTERNAL ENTRY (CHAR(32) VAR, CHAR(128) VAR,

CHAR(128) VAR, FIXED BIN);
DCL LIST CHAR(32) VAR STATIC INIT('MYLIST') ;
DCL ORULE CHAR(128) VAR STATIC INIT(' [ORIGIN_DIR]');
DCL NRULE CHAR(128) VAR STATIC INIT('MYDIR>TOOLS') ;
DCL CODE FIXED BIN;
CALL SR$ADDE(LIST, ORULE, NRULE, CODE);
IF (CODE = 0)
THEN

PUT SKIP LIST('Rule added to search list');
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;

First Edition, Update 1 7-24

SR$ADDE SEARCH RULES

END ADD_RULE;

C Sample FORTRAN 77 program for the SR$ADDE subroutine
C Declarations

INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 OSIZE, OPLUS(128)
CHARACTER*128 ORULE
INTEGER*2 NSIZE, NPLUS(128)
CHARACTER*128 NRULE
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)
EQUIVALENCE (OSIZE, OPLUS(1))
EQUIVALENCE (OPLUS(2), ORULE)
EQUIVALENCE (NSIZE, NPLUS(l))
EQUIVALENCE (NPLUS(2), NRULE)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
ORULE(1:14) = '[ORIGIN_DIR]'
OSIZE = 14
NRULE(1:14) = 'MYDIR>TOOLS'
NSIZE = 14

C Subroutine call
CALL SR$ADDE(LPLUS, OPLUS, NPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'Rule added to search list'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

(&**•

7-25 First Edition, Update 1

SUBROUTINES, VOLUME I I

SR$CREAT
SR$CRE is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Create a blank search list.

Usage

DCL SR$CREAT EXTERNAL ENTRY (CHAR(32) VAR, FIXED BIN);

CALL SR$CREAT(list_name, code);

Parameters

list_name

INPUT. The name of the search list that PRIMOS should create. A
search list name should not exceed 22 characters.

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$EXST The search list specified already exists.

E$LIST The search list name specified is an invalid name.

Discussion

SR$CREAT creates a blank search list; that is, a search list that does
not contain any user-specified or system default search rules. This
search list does, however, contain administrator rules if the System
Administrator has established administrator rules for the search list.

First Edition, Update 1 7-2 6

SR$CREAT SEARCH RULES

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples creates the MYLIST search list.

/* Sample PL/I program for the SR$CREAT subroutine */
CREATE_SEARCH_LIST: PROCEDURE OPTIONS(MAIN);
DCL SR$CREAT EXTERNAL ENTRY (CHAR(32) VAR, FIXED BIN);
DCL LIST CHAR(32) VARYING STATIC INIT('MYLIST') ;
DCL CODE FIXED BIN;
CALL SR$CREAT(LIST, CODE);
IF (CODE = 0)
THEN

PUT SKIP LIST('Search list created');
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END CREATE_SEARCH_LIST;

C Sample FORTRAN 77 program for the SR$CREAT subroutine
C Declarations

INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)

C Assignments
LIST (1:6) = 'MYLIST'
LSIZE = 6

C Subroutine call
CALL SR$CREAT(LPLUS, CODE)
IF (CODE.NE.0) GO TO 10
PRINT *, 'Search list created'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB

R-mode: Not available.

7-27 First Edition, Update 1

SUBROUTINES, VOLUME I I

SR$DEL

Purpose

Delete a specified search list.

Usage

DCL SR$DEL EXTERNAL ENTRY (CHAR(32) VAR, FIXED BIN);

CALL SR$DEL (list_name, code) ;

Parameters

list_name

INPUT. The name of the search list to be deleted,

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

ESLIST The specified list could not be located.

Discussion

SR$DEL completely deletes a search list. Both the user's search list
and its contents (including administrator rules) are deleted. The
search rules file that was used to set the search list is unaffected.

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples deletes the MYLIST search list.

First Edition, Update 1 7-28

SR$DEL SEARCH RULES

/* Sample PL/I program for the SR$DEL subroutine */
DELETE_SEARCH_LIST: PROCEDURE OPTIONS(MAIN);
DCL SR$DEL EXTERNAL ENTRY (CHAR(32) VAR, FIXED BIN);
DCL LIST CHAR(32) VARYING STATIC INIT('MYLIST') ;
DCL CODE FIXED BIN;
CALL SR$DEL(LIST, CODE);
IF (CODE = 0)
THEN

PUT SKIP LIST('Search list deleted');
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END DELETE_SEARCH_LIST;

C Sample FORTRAN 77 program for the SR$DEL subroutine
C Declarations

INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (LSIZE, LPLUS(1))
EQUIVALENCE (LPLUS(2), LIST)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6

C Subroutine call
CALL SR$DEL(LPLUS, CODE)
IF (CODE.NE.0) GO TO 10
PRINT *, 'Search list deleted'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB

R-mode: Not available.

7-2 9 First Edition, Update 1

SUBROUTINES/ VOLUME I I

SR$DSABL
SR$DSA is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Disable an optional search rule that was enabled by SR$ENABL.
subroutine reverses a single SR$ENABL operation. Compare
SR$ABSDS.

This
with

Usage

DCL SR$DSABL EXTERNAL ENTRY(CHAR(128) VAR, CHAR(32) VAR,
FIXED BIN);

CALL SR$DSABL(rule, list_name, code);

Parameters

rule

INPUT. The search rule to be disabled. The search rule should not
include the -optional keyword. This argument is case-sensitive.

list_name

INPUT. The name of the search list in which the rule is located.

code

Standard error code. Possible values are: OUTPUT,

0 Operation succeeded. This return code does not
indicate whether or not the rule is actually disabled.
SR$DSABL returns 0 if the rule is still enabled due to
multiple nested SR$ENABL calls, or if the rule was
never enabled.

E$LIST

E$RULE

Search list does not exist.

Search rule cannot be located. Rule may
non-existent or specified in the wrong case.

be

E$NTOP Rule specified is not an optional rule.

First Edition, Update 1 7-30

SR$DSABL SEARCH RULES

Discussion

SR$DSABL is used to disable an optional search rule in a search list.
An optional search rule is a rule prefaced by the -optional keyword in
the search rules file. Such rules are initially disabled when the
search rules file is used to set the search list. PRIMOS ignores
disabled search rules when performing a search operation on a search
list. You can enable an optional search rule using SR$ENABL. SR$DSABL
is used to disable a rule that has been enabled using SR$ENABL.

SR$ENABL can be invoked repetitively for the same search rule. PRIMOS
compares the number of calls to SR$ENABL with the number of calls to
SR$DSABL. Each SR$DSABL call disables one SR$ENABL call; therefore,
to disable a rule, you must invoke SR$DSABL as many times as you
invoked SR$ENABL.

You can also issue multiple SR$DSABL calls against a search rule,
causing the search rule to be repetitively disabled. To enable such a
rule, you must issue one more SR$ENABL call than the number of SR$DSABL
calls you issued. A single call to SR$ABSDS reverses multiple SR$ENABL
or SRSDSABL calls.

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples disables the MYDIR>OPTTESTS search rule in the MYLIST search
list.

/* Sample PL/I program for the SR$DSABL subroutine */
DSABL_SUB: PROCEDURE;
DCL SR$DSABL EXTERNAL ENTRY(CHAR(128) VAR, CHAR(32) VAR,

FIXED BIN) ;
DCL RULE CHAR(128) VAR STATIC INIT {'MYDIR>OPTTESTS') ;
DCL LIST CHAR(32) VAR STATIC INIT('MYLIST') ;
DCL CODE FIXED BIN;
CALL SR$DSABL(RULE, LIST, CODE);
IF (CODE = 0)
THEN

PUT SKIP LIST('Optional rule disabled');
ELSE

PUT SKIP LISTCError code: ', CODE);
PUT SKIP;
END;

7-31 First Edition, Update 1

SUBROUTINES, VOLUME II SR$DSABL

C Sample FORTRAN 77 program for the SR$DSABL subroutine / ^
C Declarations

INTEGER*2 RULESIZE, RULEPLUS(128)
CHARACTER*128 RULE
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (RULESIZE, RULEPLUS(1))
EQUIVALENCE (RULEPLUS(2), RULE)
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
RULE (1:15) = 'MYDIR>OPTTESTS'
RULESIZE - 15

C Subroutine call
CALL SR$DSABL(RULEPLUS, LPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'Optional rule disabled'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 7-32

SEARCH RULES

SR$ENABL
SR$ENA is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Enable an optional search rule,
SR$DSABL or SR$ABSDS.

Enabled rules can be disabled using

Usage

DCL SR$ENABL EXTERNAL ENTRY(CHAR(128) VAR, CHAR(32) VAR,
FIXED BIN);

CALL SR$ENABL(rule, list—name, code);

Parameters

rule

INPUT. The search rule to be enabled. The search rule specified
here should be identical to an optional rule in the search list.
The search rule specified in this argument should not include the
-optional keyword. This argument is case-sensitive.

list_name

INPUT. The name of the search list in which the rule is located.

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$LIST Search list does not exist.

E$RULE Search rule cannot be located. Rule may be
non-existent or specified in the wrong case.

E$NTOP Rule specified is not an optional rule.

7-33 First Edition, Update 1

SUBROUTINES, VOLUME II SR$ENABL

Discussion ""%

An optional search rule is a rule prefaced by the -optional keyword in
the search rules file. Such rules are initially disabled when the
search rules file is used to set the search list. PRIMOS ignores
disabled search rules when performing a search operation. When
enabled, these search rules function as ordinary search rules. The
same search rule can be repeatedly disabled and enabled. Only optional
search rules can be disabled or enabled.

You can check for the existence of a disabled search rule using the
SR$EXSTR subroutine and display disabled search rules using the SR$READ
subroutine. Disabled search rules are not displayed by the SR$NEXTR
subroutine or the LIST_SEARCH_RULES command. You can examine enabled
search rules using any of these subroutines or the LIST_SEARCH_RULES
command. An enabled search rule appears as an ordinary rule in a
search list.

You use SR$ENABL to enable an optional search rule. You can use
SR$DSABL or SR$ABSDS to disable a rule that has been enabled using
SR$ENABL.

SR$ENABL calls can be nested; that is, your program can invoke
SR$ENABL repetitively for the same search rule. SR$DSABL disables one
invocation of SR$ENABL. To disable a rule you must call SR$DSABL as
many times as SR$ENABL was called to enable the rule. SR$ABSDS
absolutely disables an enabled search rule. That is, one invocation of
SR$ABSDS disables the rule, regardless of how many times the rule had
been enabled.

PRIMOS compares the number of SR$ENABL calls and SR$DSABL calls. You
can issue multiple SR$DSABL calls against a disabled search rule. To
enable a search rule disabled in this way, you must issue one more
SR$ENABL call than the number of SR$DSABL calls you issued. A single
call to SR$ABSDS reverses multiple SR$ENABL or SR$DSABL calls.

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples enables the MYDIR>OPTTESTS search rule in the MYLIST search
list.

/* Sample PL/I program for the SR$ENABL subroutine */
ENABL_SUB: PROCEDURE;
DCL SR$ENABL EXTERNAL ENTRY(CHAR(128) VAR, CHAR(32) VAR,

FIXED BIN);
DCL RULE CHAR(128) VAR STATIC INIT('MYDIR>OPTTESTS');
DCL LIST CHAR(32) VAR STATIC INIT('MYLIST');
DCL CODE FIXED BIN;
CALL SR$ENABL(RULE, LIST, CODE);

First Edition, Update 1 7-34

SR$ENABL SEARCH RULES

IF (CODE = 0)
THEN

PUT SKIP LIST('Optional rule enabled');
ELSE

PUT SKIP LISTCError code: ', CODE);
PUT SKIP;
END;

C Sample FORTRAN 77 program for the SR$ENABL subroutine
C Declarations

INTEGER*2 RULESIZE, RULEPLUS(128)
CHARACTER*128 RULE
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (RULESIZE, RULEPLUS(1))
EQUIVALENCE (RULEPLUS(2), RULE)
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
RULE(1:15) = 'MYDIR>OPTTESTS'
RULESIZE = 15

C Subroutine call
CALL SR$ENABL(RULEPLUS, LPLUS, CODE)
IF (CODE.NE.0) GO TO 10
PRINT *, 'Optional rule enabled'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

/̂ **k

7-35 First Edition, Update 1

SUBROUTINES, VOLUME I I

SR$EXSTR
SR$EXS is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Determine if a search rule exists in a specified search list

Usage

DCL SR$EXSTR EXTERNAL ENTRY(CHAR(128) VAR, FIXED BIN, CHAR(32) VAR,
BIT(l) ALIGNED) RETURNS(BIT(1) ALIGNED);

rule_exists = SR$EXSTR(rule, rule_type, list_name, case_sensitive);

Parameters

rule

INPUT. The search rule to be checked for existence in the
specified search list.

rule_type

INPUT. Type of search rule to be checked. The following are
available search rules types:

K$TEXT Rule is an ordinary text string.

K$HMDR Rule is the [home_dir] keyword.

K$ORDR Rule is the [origin_dir] keyword.

K$RFDR Rule is the [referencing_dir] keyword.

K$KEYW Rule is a keyword that begins with a hyphen.

K$ANYTYPE Rule can be either an ordinary text string or a
keyword.

list_name

INPUT. The name of the search list that PRIMOS should search for
the specified rule.

/*̂ ,

First Edition, Update 1 7-36

SR$EXSTR SEARCH RULES

case_sensitive

INPUT. Specifies whether the comparison of rule and the rules in
the search list should be case-sensitive or case-insensitive. 'l'b
specifies case-sensitive; 'O'b specifies case-insensitive. If
case-sensitive, the search rules mydir>test and MYDIR>TEST are
different rules; if case-insensitive, these two search rules are
equivalent.

rule_exists

RETURNED VALUE. Indicates the success or failure of the operation,
'l'b indicates that the specified search rule was found in the
search list. 'O'b indicates that the search rule could not be
found.

Discussion

SR$EXSTR determines whether a specified search rule exists in a search
list. This search rule can be a pathname, an optional search rule, or
a search rule keyword. This subroutine determines the existence of
both disabled and enabled optional search rules.

When checking for the existence of a keyword, you must set both rule
and rule_type:

• If the search rule sought is a keyword that begins with a
hyphen, set rule to the keyword literal (including the hyphen)
and rule_type to K$KEYW. Search rule keywords are not
case-sensitive.

• If the search rule sought is [home_dir], [origin_dir], or
[referencing_dir], set rule to null and rule_type to the type
for that keyword.

• If the search rule sought combines a keyword variable and a
partial pathname, such as [origin_dir]>TOOLS, set rule to the
pathname portion of the search rule (in this case, rules =
TOOLS), and set rule_type to the type for the keyword variable
(in this case, rule_type = K$ORDR). The rule argument should
not begin with an angle bracket (>).

SR$EXSTR can only check for a keyword as a literal; it cannot check
for the current value assigned to a keyword. SR$EXSTR cannot locate
the -insert or -system search rule keywords. Do not specify the
-optional keyword when determining the existence of an optional search
rule.

SR$EXSTR may indicate that a search rule is unlocatable for several
reasons: The search list that you specified may not exist. The search
rule may not exist in the search list specified. The search rule may
be of a different type than the one specified in rule_type. If you set

7-37 First Edition, Update 1

SUBROUTINES, VOLUME II SR$EXSTR

the case_sensitive argument, the search rule that yyi specified in rule
and the search rule in the search list may differ in case.

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples checks for the existence of the MYDIR>TOOLS search rule in the
MYLIST search list. The test is case-insensitive.

/* Sample PL/I program for the SR$EXSTR subroutine */
EXIST_SUB: PROCEDURE;
%INCLUDE 'SYSCOM>KEYS.PLl' ;
DCL SR$EXSTR EXTERNAL ENTRY(CHAR(128) VAR, FIXED BIN, CHAR(32) VAR,

BIT(l) ALIGNED) RETURNS(BIT(1) ALIGNED);
DCL RULE CHAR(128) VAR STATIC INIT ('MYDIR>TOOLS') ;
DCL TYPE FIXED BIN;
DCL LIST CHAR(32) VAR STATIC INIT('MYLIST');
DCL CASE BIT(l) ALIGNED STATIC INIT('O'b);;
DCL EXIST BIT(l) ALIGNED;
EXIST = SR$EXSTR(RULE, K$TEXT, LIST, CASE);
PUT SKIP LIST('Existence of rule is: ', EXIST);
PUT SKIP;
END;

C Sample FORTRAN-77 program for the SR$EXSTR subroutine
$INSERT SYSCOM>KEYS.INS.FTN
C Declarations

INTEGER*2 RULESIZE, RULEPLUS(128)
CHARACTER*128 RULE
INTEGER*2 TYPE
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 CASE
INTEGER*2 EXIST

C Equivalences
EQUIVALENCE (RULESIZE, RULEPLUS(1))
EQUIVALENCE (RULEPLUS(2) , RULE)
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
RULE(1:18) = 'MYDIR>TOOLS'
RULESIZE = 18
CASE = :000000

First Edition, Update 1 7-38

SR$EXSTR SEARCH RULES

C Subroutine call
EXIST - SR$EXSTR(RULEPLUS, K$TEXT, LPLUS, CASE)
IF (EXIST.EQ.O) GO TO 10
PRINT *, 'Rule exists', EXIST
CALL EXIT

10 PRINT *, 'Rule does not exist', EXIST
CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-39 First Edition, Update 1

SUBROUTINES, VOLUME I I

SR$FR_LS
SR$FRL is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Free the space allocated to a linked list structure by SR$LIST or
SR$READ.

Usage

DCL SR$FR_LS EXTERNAL ENTRY(PTR, FIXED BIN);

CALL SR$FR_LS(structure_ptr, code);

Parameters

structure_ptr

INPUT. A pointer to the structure to be freed. You set this
pointer value using the value of the output_ptr argument of SR$LIST ^^
or SR$READ. ^J

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$BDAT Encountered invalid pointer.

Discussion

SR$FR_LS frees space allocated by the SR$LIST and SR$READ subroutines.
You should invoke SR$FR_LS after every successful invocation of SR$LIST
or SR$READ. If either SR$LIST or SR$READ fails (that is, returns a
nonzero value for the code argument) no space is allocated, and
SR$FR_LS does not need to be invoked.

SR$FR_LS deletes a structure by following the structure's internal
pointers. It does not examine the contents of the other entry fields
in the structure. If SR$FR_LS encounters an invalid pointer, it
returns an E$BDAT error code. The subroutine may have already freed
part of the linked list when it encountered the invalid pointer.

First Edition, Update 1 7-40

SR$FR_LS SEARCH RULES

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples frees storage space allocated by the SR$READ subroutine.

/* Sample PL/I program for the SR$FR_LS subroutine */
FREE_LIST_STRUCTURE: PROCEDURE OPTIONS(MAIN);
DCL SR$FR_LS EXTERNAL ENTRY (PTR, FIXED BIN);
DCL LOC PTR;
DCL CODE FIXED BIN;
DCL SR$READ EXTERNAL ENTRY (FIXED BIN, CHAR(32) VAR, PTR, FIXED BIN);
CALL SR$READ(VER, 'MYLIST', LOC, CODE);
CALL SR$FR_LS(LOC, CODE);
IF (CODE - 0)
THEN

PUT SKIP LIST('List structure space freed');
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END FREE_LIST_STRUCTURE;

C Sample FORTRAN 77 program for the SR$FR_LS subroutine
C Declarations

INTEGER*4 PTR
INTEGER*2 CODE

C Create the structure to be freed
10 CALL SR$LIST(INTS(1), PTR, CODE)

C Call SR$FR_LS subroutine
20 CALL SR$FR_LS(PTR, CODE)

IF (CODE.NE.O) GO TO 30
PRINT *, 'List structure space freed'
CALL EXIT

C Error processing
30 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-41 First Edition, Update 1

SUBROUTINES, VOLUME I I

SR$INIT
SR$INI is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Initialize all search lists to system defaults

Usage

DCL SR$INIT EXTERNAL ENTRY<FIXED BIN);

CALL SR$INIT(code);

Parameters

code

OUTPUT. Standard error code. Because SR$INIT can initialize
multiple search lists, multiple errors can occur. The returned
error code indicates only the most recently encountered of these
errors. Possible values are:

0 Operation succeeded. All search lists initialized.

E$FNTF A system default file contains an -insert keyword that
refers to a non-existent file. One or more search
lists have not been initialized. Search lists not in
error have been initialized.

E$NEST A system default file contains an -insert keyword that
invokes a circular reference. One or more search
lists have not been initialized. Search lists not in
error have been initialized.

Discussion

SR$INIT initializes all of the user's search lists to system defaults.
System default rules include all rules found in directory
SEARCH_RULES*, including system rules and administrator rules. If no
system defaults exist for a search list, SR$INIT deletes that search
list. If an error occurs during initialization, SR$INIT sets the code
argument and does not initialize the list in error; it proceeds to
initialize to system defaults all lists that are not in error.

First Edition, Update 1 7-42

SR$INIT SEARCH RULES

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples initializes all of the user's search lists. Search lists with
system defaults are reset to default rules. Search lists without
system defaults are deleted.

/* Sample PL/I program for the SR$INIT subroutine */
INITIALIZE_SEARCH_LISTS: PROCEDURE OPTIONS(MAIN);
DCL SR$INIT EXTERNAL ENTRY (FIXED BIN);
DCL CODE FIXED BIN;
CALL SR$INIT(CODE);
IF (CODE - 0)
THEN

PUT SKIP LIST('Search lists initialized');
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END INITIALIZE_SEARCH_LISTS;

C Sample FORTRAN 77 program for the SR$INIT subroutine
C Declarations

INTEGER*2 CODE
C Subroutine call

CALL SR$INIT(CODE)
IF (CODE.NE.0) GO TO 10
PRINT *, 'Search lists initialized'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

7-43 First Edition, Update 1

SUBROUTINES, VOLUME II

SR$LIST
SR$LIS is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Return the names of the user's search lists.

Usage

DCL SR$LIST EXTERNAL ENTRY(FIXED BIN, PTR, FIXED BIN);

CALL SR$LIST(version, output_ptr, code);

Parameters

version

INPUT. The version number of the requested structure. Different
version numbers are assigned to structures with fields of differing
lengths. For Rev. 21.0, set this argument to 1.

output_ptr

OUTPUT. Pointer to a structure used to hold the search list names.
This structure contains one entry for each of the user's search
lists. If the user has no search lists, this pointer is set to
null. See Structure Description below.

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$BVER Version number is invalid.

Structure Description

The parameter output_ptr points to a structure, list_struc, of the
following format:

First Edition, Update 1 7-44

SR$LIST SEARCH RULES

DCL 1 list_struc,
2 version FIXED BIN,
2 length FIXED BIN,
2 next PTR OPTIONS(SHORT),
2 list_name CHAR(32) VAR,
2 template CHAR(128) VAR;

version

INPUT. The version number of the structure (for Rev. 21.0, the
version number is always 1).

length

INPUT. The length of a structure entry (always 172 bytes).

next

OUTPUT. A pointer to the next entry. If this is the last entry,
the value is null.

list_name

OUTPUT. The name of the search list.

template

OUTPUT. The pathname of the search rules file used to set the
search list. Only one pathname is listed, even if multiple search
rule files were used to set the search list. If the search list
contains system rules and administrator rules, template is the
search rule file for the system rules. If the search list contains
user-specified rules, template is the user's search rules file
supplied to SR$SSR or the SET_SEARCH_RULES command.

Discussion

SR$LIST copies information about all of the user's search lists into a
user-specified structure. SR$LIST creates a separate structure entry
for each of the user's search lists.

It is the user's responsibility to free the space allocated for the
structure used by SR$LIST. This space can be freed using the SR$FR_LS
subroutine.

7-45 First Edition, Update 1

SUBROUTINES, VOLUME II SR$LIST

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples creates the structure LISTSTRUC and copies into it a separate
entry for the name of each of the user's search lists.

/* Sample PL/I program for the SR$LIST subroutine */
LIST_NAMES: PROCEDURE;
DCL SR$LIST EXTERNAL ENTRY(FIXED BIN, PTR, FIXED BIN);
DCL VER FIXED BIN STATIC INIT('l');
DCL LOC PTR;
DCL CODE FIXED BIN;
DCL 1 LISTSTRUC BASED(LOC),

2 VERSION FIXED BIN,
2 LENGTH FIXED BIN,
2 NEXT PTR OPTIONS(SHORT),
2 LIST CHAR(32) VAR,
2 TEMPLATE CHAR(128) VAR;

CALL SR$LIST(VER, LOC, CODE)/
IF (CODE = 0)
THEN BEGIN;

DO WHILE (LOC A= NULL());
PUT SKIP LIST('List name: ', LIST);
PUT SKIP LISTCSearch rules file: ', TEMPLATE);
LOC = NEXT;
END;

END; ^
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END;

C Sample FORTRAN 77 program for the SR$LIST subroutine
C Declarations

INTEGER*4 PTR, NPTR, PTR1
INTEGER*2 CODE, LISTL, FILEL

C Establish space for output structure
INTEGER*2 LISTSTRUC(8 6)
CHARACTER*32 LIST
CHARACTER*128 FILE

C Redefine the structure entries
EQUIVALENCE (NPTR, LISTSTRUC(3))
EQUIVALENCE (LISTL, LISTSTRUC(5)) , (LIST, LISTSTRUC(6))
EQUIVALENCE (FILEL, LISTSTRUC(22)) , (FILE, LISTSTRUC(23))

C Subroutine call
CALL SR$LIST(INTS(1), PTR, CODE)
IF (CODE.NE.0) GO TO 30
PTR1 = PTR

C Keep analyzing until the pointer is null
10 IF (AND(PTR,:1777600000).EQ.:1777600000) GO TO 20

First Edition, Update 1 7-46

SR$LIST SEARCH RULES

C Copy the structure to place where we can access it
CALL MOVEW$(PTR, LOC(LISTSTRUC), INTS(8 6))
PRINT *, 'List name: ', LIST(1:LISTL)
PRINT *, 'Search rules file: ', FILE(1:FILEL)
PRINT *
PTR = NPTR
GO TO 10

C Normal exit
20 CALL SR$FR_LS(PTR1, CODE)

IF (CODE.NE.0) GO TO 30
CALL EXIT

C Error processing
30 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-47 First Edition, Update 1

SUBROUTINES, VOLUME I I

SR$NEXTR
SR$NEX is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Read the next rule from a search list.

Usage

DCL SR$NEXTR EXTERNAL ENTRY(CHAR(32) VAR, FIXED BIN(31),
CHAR(128) VAR, PTR,
FIXED BIN, CHAR(128) VAR,
FIXED BIN) RETURNS (FIXED BIN(31));

curr_rule_handle = SR$NEXTR(list_name, prev_rule_handle,
referencing_dir, locator,
rule_type, rule, code);

Parameters

list_name

INPUT. The name of the search list containing the rules to be
read.

prev_rule_handle

INPUT. The point in the search list at which to start reading.
Use the value K$BGN to read the first rule in the search list. To
read other rules in the search list, use the value of the
curr_rule_Jiandle argument from a previous invocation of SR$NEXTR.

referencing_dir

INPUT. A search rule to substitute for the [referencing_dir]
keywords in the search list. You establish either a search rules
string or the null value for this argument. The search rule that
you specify is substituted into the search list; then the read
operation is performed on this modified search list. If you
specify the null value, SR$NEXTR skips over any search rule
containing the [referencing_dir] keyword and reads the next rule in
the search list. The value you establish for [referencing_dir]
keywords only applies to the current invocation of SR$NEXTR.

First Edition, Update 1 7-48

SR$NEXTR SEARCH RULES

locator

OUTPUT. This argument reads the locator value established for the
search rule. PRIMOS sets the locator values for search rules in
the ENTRY$ search list. You can use the SR$SETL subroutine to set
locator values for rules in user-defined search lists and the
ENTRY$ search list. Locators are not set for other search lists.
If a locator value for a rule is not set, this argument defaults to
null.

rule_type

OUTPUT. The type of search rule read. Possible values are:

1 K$TEXT Rule is an ordinary text string.

2 K$HMDR Rule is the [home_dir] keyword.

3 K$ORDR Rule is the [origin_dir] keyword.

4 K$RFDR Rule is the [referencing_dir] keyword.

8 K$KEYW Rule is a keyword that begins with a hyphen,

rule

OUTPUT. The search rule read by this
rule in the list is [origin_dir],
origin directory. If the search rule
rule returns an asterisk (*). If
[referencing_dir], rule returns the
referencinq_dir argument. SR$NEXTR
rules that are set to the null value
rules. If the search rule is s
-added_disks), rule returns the keyword itself

operation. If the search
rule returns the name of the
in the list is [home_dir],

the search rule in the list is
pathname supplied by the
skips over [referencing_dir]
and disabled optional search
ome other keyword (such as

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$LIST Search list specified does not exist.

E$EOL Attempting to read beyond the end of the list.

curr_rule_handle

RETURNED VALUE. The internal handle of the rule read by this
operation. To read the next rule, you input this curr_rule_handle
value to the prev_.rule_handle for the next invocation of SR$NEXTR.
If SR$NEXTR is invoked when there are no more rules in the list,
this argument is set to K$END.

7-49 First Edition, Update 1

http://rev_.ru

SUBROUTINES, VOLUME II SR$NEXTR

Discussion

SR$NEXTR is used to sequentially read the rules in a search list, one
rule at a time. Each invocation of SR$NEXTR reads one rule. To read
all of the rules in a search list in one operation, use SR$READ.

Usually, SR$NEXTR is invoiced in a program loop, in which the first
invocation reads the first rule in the search list and returns its
value and address. The next invocation of SR$NEXT uses this output
address as its input, and returns the second search rule's value and
address. Each invocation takes the curr_rule_handle from the previous
call to SR$NEXTR and uses that as the prev_rule_handle input.

SR$NEXTR reads locator pointer values. To set a locator pointer value,
you use SR$NEXTR to supply the address of a search rule to the SR$SETL
subroutine. For further details, refer to SR$SETL.

SR$NEXTR does not read disabled optional search rules. It reads
enabled optional search rules as ordinary search rules with no
indication that these rules are optional. SR$READ does read disabled
optional search rules. For further details on optional search rules
refer to the SR$ENABL subroutine.

If you call SR$NEXTR when there are no more search rules to read in the
search list, the rule argument returns the value of the last rule in
the list (the previous rule), the code argument returns a value of
E$EOL, and the curr_rule_handle returns K$END.

The SR$NEXTR curr_rule_handle is a required input parameter for the
SR$SETL subroutine.

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each • of these
examples sequentially reads the search rules in the MYLIST search list.
Each invocation of SR$NEXTR reads one search rule. Each example
supplies a value to the [referencing_dir] search rule keyword.

/* Sample PL/I program for the SR$NEXTR subroutine */
NEXT_SUB: PROCEDURE;
%INCLUDE 'SYSCOM>KEYS.PL1';
DCL SR$NEXTR EXTERNAL ENTRY(CHAR(32) VAR, FIXED BIN(31),

CHAR(128) VAR, PTR,
FIXED BIN, CHAR(128) VAR,
FIXED BIN) RETURNS (FIXED BIN(31))

DCL LIST CHAR(32) VAR STATIC INIT('MYLIST');
DCL PREV FIXED BIN(31);
DCL REFD CHAR(128) VAR STATIC INIT('MYDIR>TOOLS');
DCL LOC PTR;

First Edition, Update 1 7-50

SR$NEXTR SEARCH RULES

DCL 1 LOCATOR DEFINED (LOC),
2 FAULT BIT(l),
2 RING BIT(2),
2 FMT BIT(l),
2 SEGNO BIT(12),
2 WORD BIT(16),
2 OFFSET BIT(4),
2 RES BIT(12);

DCL RTYPE FIXED BIN;
DCL RULE CHAR(128) VAR;
DCL CODE FIXED BIN;
DCL CURR FIXED BIN(31);
DCL X FIXED BIN;
CURR = SR$NEXTR(LIST, K$BGN, REFD, LOC, RTYPE, RULE, CODE);
IF (CODE = 0)
THEN

BEGIN;
PUT SKIP LIST('The first rule is: ', RULE);
PUT SKIP LIST('Locator seg no: ',LOCATOR.SEGNO);
PUT SKIP LISTCLocator word no: ', LOCATOR. WORD) ;
END;

ELSE GO TO A;
PUT SKIP;
DO X = 1 TO 10;
CURR = SR$NEXTR(LIST, CURR, REFD, LOC, RTYPE, RULE, CODE);
IF (CODE = 0)
THEN

BEGIN;
PUT SKIP LIST('The rule is: ', RULE);
PUT SKIP LISTCLocator seg no: ',LOCATOR.SEGNO);
PUT SKIP LISTCLocator word no: ',LOCATOR.WORD) ;
END;

ELSE GO TO A;
END;

A: PUT SKIP LISTCError code: ', CODE) ;
PUT SKIP;
END NEXT_SUB;

C Sample FORTRAN 77 program for the SR$NEXTR subroutine
$INSERT SYSCOM>KEYS.INS.FTN
C Declarations

INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*4 PREV
INTEGER*2 REFSIZE, REFPLUS(128)
CHARACTER*128 REF
INTEGER*4 PTR
INTEGER*2 TYPE
INTEGER*2 RULESIZE, RULEPLUS(128)
CHARACTER*128 RULE
INTEGER*2 CODE
INTEGER*2 RETVAL

7-51 First Edition, Update 1

SUBROUTINES, VOLUME II SR$NEXTR

C Equivalences
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)
EQUIVALENCE (REFSIZE, REFPLUS(l))
EQUIVALENCE (REFPLUS(2), REF)
EQUIVALENCE (RULESIZE, RULEPLUS(l))
EQUIVALENCE (RULEPLUS(2), RULE)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE - 6
REF(1:15) = "
REFSIZE = 15
RULE = ''

C Subroutine call
RETVAL = SR$NEXTR(LPLUS, K$BGN, REFPLUS, PTR,
* TYPE, RULEPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'The first rule is:', RULE
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 7-52

SEARCH RULES

SR$READ
SR$REA is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Read the rules in a specified search list into a structure established
by the user. SR$READ reads all rules, including disabled rules.

Usage

DCL SR$READ EXTERNAL ENTRY(FIXED BIN, CHAR(32) VAR,
PTR, FIXED BIN);

CALL SR$READ(version, l i s t _ n a m e , o u t p u t _ p t r , code) ;

Parameters

v e r s i o n

INPUT. The version number of the requested structure. Different
version numbers are assigned to structures with fields of differing
lengths. For Rev. 21.0, set this argument to 1.

list_name

INPUT. The name of the search list to be read.

output_ptr

OUTPUT. A pointer to the structure that contains the rules copied
from the search list. If the specified search list contains no
rules, this pointer is set to null. See Structure Description
below.

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$BVER Version number is invalid.

E$LIST Search list specified does not exist.

7-53 First Edition, Update 1

SUBROUTINES, VOLUME II SR$READ

Structure Description /«%

The parameter output_ptr points to a structure, rules_struc, of the
following format:

DCL 1 rules_struc,
2 version FIXED BIN,
2 length FIXED BIN,
2 next PTR OPTIONS(SHORT),
2 rule CHAR(128) VAR;
2 enabled BIT(l) ALIGNED;

version

INPUT. The version number of the structure (for Rev. 21, the
version number is always 1).

length

INPUT. The length of a structure entry (always 140 bytes).

next

OUTPUT. A pointer to the next entry. If the current entry is the
last entry in the structure, next is set to null.

rule

OUTPUT. The search rule itself.

enabled

OUTPUT. An indicator of whether or not the rule is enabled. A
value of 'l'b indicates either an ordinary search rule or an
enabled optional search rule. A value of '0'b indicates a disabled
optional search rule.

Discussion

SR$READ copies all of the search rules in a user's search list into a
user-specified structure. The search list itself is unaffected by this
copy operation. SR$READ creates a separate structure entry for each
search rule. To check for the existence of an individual search rule,
use SR$EXSTR; to read an individual search rule, use SR$NEXTR.

SR$READ reads disabled optional search rules. Optional search rules
are disabled when they are initially set in a search list. Disabled
optional search rules are not shown by the LIST_SEARCH_RULES command or
by the SR$NEXTR read operation. For further details on creating
optional search rules, refer to the Advanced Programmer's Guide, Volume

First Edition, Update 1 7-54

SR$READ SEARCH RULES

II. For further details on enabling optional search rules, refer to
the SR$ENABL subroutine.

It is the user's responsibility to free the space allocated for the
structure used by SR$LIST. This space can be freed using the SR$FR_LS
subroutine.

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples sequentially reads all of the search rules in search list
MYLIST into the structure READSTRUC. Each READSTRUC entry contains
information about one search rule.

/* Sample PL/I program for the SR$READ subroutine */
READ_SUB: PROCEDURE;
%INCLUDE 'SYSCOM>KEYS.PL1' ;
DCL RETVAL FIXED BIN(31);
DCL SRSREAD EXTERNAL ENTRY(FIXED BIN, CHAR(32) VAR,

PTR, FIXED BIN);
DCL VER FIXED BIN STATIC INIT('l');
DCL LIST CHAR(32) VAR STATIC INIT('MYLIST') ;
DCL LOC PTR;

f^ DCL CODE FIXED BIN;
DCL 1 READSTRUC BASED(LOC) ,

2 VERSION FIXED BIN,
2 LENGTH FIXED BIN,
2 NEXT PTR OPTIONS(SHORT),
2 RULE_STR CHAR(128) VAR,
2 ENABLED BIT(l) ALIGNED;

CALL SR$READ(VER, LIST, LOC, CODE);
IF (CODE = 0)
THEN BEGIN;

DO WHILE (LOC A= NULL());
PUT SKIP LIST('The rule is: ', RULE_STR);
IF (ENABLED = 'l'b) THEN PUT SKIP LISTCRule is enabled');

ELSE PUT SKIP LISTCRule is disabled');
LOC - NEXT;
END;
END;

ELSE
PUT SKIP LIST('Error code: ', CODE);

PUT SKIP;
END;

7-55 First Edition, Update 1

SUBROUTINES, VOLUME II SR$READ

C Sample FORTRAN 77 program for the SR$READ subroutine
C Declarations

INTEGER*4 PTR, NPTR, PTR1
INTEGER*2 CODE, RULEL
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST

C Establish space for output structure
INTEGER*2 STRUCT(70)
CHARACTER*128 RULE

C Redefine the structure entries
EQUIVALENCE (NPTR, STRUCT(3))
EQUIVALENCE (RULEL, STRUCT(5)), (RULE, STRUCT(6))
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)

C Assignments
LIST (1:6) = 'MYLIST'
LSIZE = 6

C Subroutine call
CALL SR$READ(INTS(1), LPLUS, PTR, CODE)
IF (CODE.NE.0) GO TO 30
PTR1 = PTR

C Keep analyzing until the pointer is null
10 IF (AND(PTR,:1777600000).EQ.:1777600000) GO TO 20
C Copy the structure to place where we can access it

CALL MOVEW$(PTR, LOC(STRUCT), INTS(70))
PRINT *, 'The rule is: ', RULE(1:RULEL)
PRINT *
PTR = NPTR
GO TO 10

C Normal exit
20 CALL SR$FR_LS(PTR1, CODE)

IF (CODE.NE.0) GO TO 30
CALL EXIT

C Error processing
30 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 7-56

SEARCH RULES

f^

SR$REM

Purpose

Remove a search rule from a specified search list.

Usage

DCL SR$REM EXTERNAL ENTRY (CHAR(32) VAR, CHAR(128) VAR, FIXED BIN);

CALL SR$REM(list_name, rule, code);

Parameters

list_name

INPUT. The name of the search list from which a search rule is to
be removed.

rule

INPUT. The search rule to be removed from the list. The value you
specify for rule must be in the same case (uppercase or lowercase
letters) as the corresponding search rule in the search list.

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$LIST Search list does not exist.

E$RULE Rule cannot be found in search list specified. Rule
may be non-existent or in the wrong case.

E$ADMN Rule specified for removal is an administrator rule.

Discussion

SR$REM removes the first instance of a search rule that exactly matches
the value of the SR$REM rule argument. This matching operation is
case-sensitive. SR$REM can delete user-specified and system default
search rules and keywords. SR$REM cannot delete administrator search
rules.

7-57 First Edition, Update 1

SUBROUTINES, VOLUME II SR$REM

You can use SR$REM to remove search rule keywords, for example,
[home_dir] and -added_disks. You remove a keyword variable by
specifying the keyword, not by specifying the current value of that
keyword variable.

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples removes the search rule MYDIR>TESTS from the MYLIST search
list.

/* Sample PL/I program for the SR$REM subroutine */
REMOVE_RULE: PROCEDURE OPTIONS(MAIN);
DCL SR$REM EXTERNAL ENTRY (CHAR(32) VAR, CHAR(128) VAR, FIXED BIN);
DCL RULE CHAR(128) VAR STATIC INIT('MYDIR>TESTS');
DCL LIST CHAR(32) VAR STATIC INIT('MYLIST') ;
DCL CODE FIXED BIN;
CALL SR$REM(LIST, RULE, CODE);
IF (CODE = 0)
THEN

PUT SKIP LIST('The rule has been removed');
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP; ^
END REMOVE_RULE;

C Sample FORTRAN 77 program for the SR$REM subroutine
C Declarations

INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 RULESIZE, RULEPLUS(128)
CHARACTER*128 RULE
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)
EQUIVALENCE (RULESIZE, RULEPLUS(1))
EQUIVALENCE (RULEPLUS(2), RULE)

C Assignments
LIST (1:6) = 'MYLIST'
LSIZE = 6
RULE(1:12) = 'MYDIR>TESTS'
RULESIZE = 12

C Subroutine call
CALL SR$REM(LPLUS, RULEPLUS, CODE)
IF (CODE.NE.0) GO TO 10
PRINT *, 'Rule removed from list'
CALL EXIT

First Edition, Update 1 7-58

/j^

SR$REM SEARCH RULES

C Error processing
10 PRINT *, 'Error code ', CODE

. CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-59 First Edition, Update 1

SUBROUTINES, VOLUME II

SR$SETL
SR$SET is an alternate name, which is required for FTN and is optional
for other languages.

Purpose

Modify the locator pointer of a search rule.

Usage

DCL SR$SETL EXTERNAL ENTRY (FIXED BIN<31), PTR, FIXED BIN);

•CALL SR$SETL(rule_handle, locator, code);

Parameters

rule_handle

INPUT. The handle you use to locate the rule to be modified. You
obtain the rule_handle value from the curr_rule_handle argument
returned by the SR$NEXTR subroutine.

locator

INPUT. The value you wish to establish for the locator pointer. A
locator pointer value should be a valid address in memory. You can
set this argument to null to delete a previous locator pointer
value.

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$BPAR Rule_handle is set to a null address.

E$ADMN Attempted to set the locator pointer of an
administrator rule.

Discussion

SR$SETL is used to set the locator pointer for a rule. Each search
rule in the ENTRY$ search list and in user-defined search lists has a
locator pointer. When the search list is set, these locator pointers

First Edition, Update 1 7-60

SR$SETL SEARCH RULES

are initialized to null values. If the locator is null, PRIMOS
searches for a file system object by searching the file system. Once
the location of the file system object is known, the locator pointer
can be assigned the address in memory of that object. If the locator
is not null/ PRIMOS locates the file system object by going to the
address in memory specified by the locator pointer. Assigning a
locator pointer value speeds subsequent use of a search rule.

PRIMOS automatically assigns locator pointer values to the search rules
in the ENTRY$ search list. The first search operation that uses an
ENTRY$ search rule causes PRIMOS to set that search rule's locator
pointer. Using SR$SETL, you can set locator pointers of search rules
in user-defined search lists and search rules in the ENTRY$ search
list.

SR$SETL is used in combination with SR$NEXTR. You first read the
search rule using SR$NEXTR. SR$NEXTR returns an address that you
supply as the rule_handle argument input to SR$SETL. After setting the
locator pointer, you can check this value using SR$NEXTR. The SR$NEXTR
locator argument displays the locator pointer value.

Locator pointer values are not used by ATTACH$, BINARY$, COMMAND$, or
INCLUDE$ search list processing. You cannot use SR$SETL to set a
locator value for an administrator rule.

Example

The following example sets the locator pointer of the first search rule
in the MYLIST search list. It first calls SR$NEXTR to return the
address of the search rule. It then supplies this search rule address
and a locator pointer value to SR$SETL. Finally, it calls SR$NEXTR
again to confirm the new locator pointer value for that search rule.

/* Sample PL/I program for the SR$SETL subroutine */
SET_LOCATOR: PROCEDURE OPTIONS(MAIN);
%INCLUDE 'SYSCOM>KEYS.PL1' ;
DCL SR$NEXTR EXTERNAL ENTRY(CHAR(32) VAR, FIXED BIN(31),

CHAR(128) VAR, PTR,
FIXED BIN, CHAR(128) VAR,
FIXED BIN) RETURNS (FIXED BIN(3D);

DCL LNAME CHAR(32) VAR STATIC INIT('MYLIST') ;
DCL PREV FIXED BIN(31);
DCL REFD CHAR(128) VAR STATIC INIT(");
DCL LOC PTR;
DCL 1 LOCATOR DEFINED (LOC),

2 FAULT BIT(l),
2 RING BIT(2),
2 FORMAT BIT(l),
2 SEGNO BIT(12),
2 WORDNO BIT(16);

DCL RTYPE FIXED BIN;

7-61 First Edition, Update 1

SUBROUTINES, VOLUME II SR$SETL

DCL RULE CHAR(128) VAR;
DCL CODE FIXED BIN;
DCL RETVAL FIXED BIN(31);
DCL SR$SETL EXTERNAL ENTRY (FIXED BIN(31), PTR, FIXED BIN);
DCL LOC2 PTR;
DCL 1 LOCATOR2 DEFINED (LOC2),

2 FAULT2 BIT(l),
2 RING2 BIT (2),
2 F0RMAT2 BIT(l),
2 SEGN02 BIT(12),
2 W0RDN02 BIT(16);

SEGN02 = '100111111111'b;
WORDN02 - '0101010101010101'b;
/* Perform the calls */
RETVAL - SR$NEXTR(LNAME, K$BGN, REFD, LOC, RTYPE, RULE, CODE);

IF (CODE = 0) THEN
BEGIN;
PUT SKIP LIST ('The rule is: ', RULE);'
PUT SKIP LIST('The original segment number is: ',LOCATOR.SEGNO);
PUT SKIP LIST('The original word number is : ',LOCATOR.WORDNO);
END;

ELSE GO TO A;
CALL SRSSETL(RETVAL, LOC2, CODE);

IF (CODE = 0) THEN
PUT SKIP LIST('Locator pointer set');

ELSE GO TO A;
RETVAL = SR$NEXTR(LNAME, K$BGN, REFD, LOC, RTYPE, RULE, CODE);

IF (CODE = 0) THEN
BEGIN;
PUT SKIP LIST('The rule is: ', RULE);
PUT SKIP LIST('The reset segment number is: ',LOCATOR.SEGNO);
PUT SKIP LIST('The reset word number is: ',LOCATOR.WORDNO);
END;

ELSE GO TO A;
A: PUT SKIP LIST('Error code is: ', CODE);
END SET_LOCATOR;

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available.

First Edition, Update 1 7-62

SEARCH RULES

SR$SSR

Purpose

Set a search list using a user-defined search rules file. SR$SSR can
create a new search list, overwrite an existing search list/ or append
rules to an existing search list.

Usage

DCL SR$SSR EXTERNAL ENTRY(CHAR(128) VAR, CHAR(32) VAR,
BIT(l) ALIGNED, CHAR(128) VAR,
FIXED BIN, FIXED BIN);

CALL SR$SSR(template_path, list_nanie, overwrite, error_path,
error_line, code);

Parameters

template_path

INPUT. The pathname of the search rules file that SR$SSR should
use to set the search list.

list_name

INPUT. The name of the search list that PRIMOS should set. A
search list name should be limited to 22 characters. If the search
list does not exist, SR$SSR creates it. If the search list already
exists, SR$SSR either overwrites its contents, or adds rules to the
end of the list, depending on how you set the overwrite argument.

overwrite

INPUT. A flag you set to indicate whether SR$SSR should overwrite
existing rules in the search list. If you set overwrite to 'O'b,
SR$SSR appends your search rules to the list without affecting
existing search rules. If you set overwrite to 'l'b, SR$SSR
overwrites (deletes) existing search rules.

error_path

OUTPUT. The pathname of an unlocatable search rules file, or a
search rules file containing invalid rules. If SR$SSR fails
because it cannot locate an input file, it returns the pathname of
that file to error_path. This pathname can be the search rules
file, or a file requested by a -system or -insert keyword.

7-63 First Edition, Update 1

SUBROUTINES, VOLUME II SR$SSR

error_line /*%

OUTPUT. The line number within a search list of an invalid search
rule. SR$SSR returns the line number of the -insert keyword search
rule that requests a circular reference. SR$SSR does not set
error_line for -insert or -system keywords that refer to
non-existent files. The default value for this argument is 0.

code

OUTPUT. Standard error code. Possible values are:

0 Operation succeeded.

E$BPAR Either the search rules file or a file invoked by an
-insert or -system keyword contains invalid rules.

E$NRIT You do not have read access rights to a file.

E$FNTF Either the search rules file does not exist or an
-insert or -system keyword refers to a non-existent
file.

E$LIST Illegal list_name.

E$NEST The -insert keyword search rules nest too deeply (over
100 levels) or request a circular reference.

Discussion

SR$SSR sets a search list by copying the rules in the search rule file
specified in the template_path argument. It prefaces the search list
with administrator rules if such rules exist for that list.

If the specified list already exists, you can direct SR$SSR to either
overwrite the existing list or append rules to the existing list. An
overwrite operation deletes all rules from the existing list, copies in
the administrator rules for that list, then copies the rules in the
template_path file into the search list. An append operation copies
the rules in the template_path file to the end of the existing search
list. In either event, if SR$SSR encounters an error, it sets the code
argument and leaves the existing list unchanged.

If the search rules file you are using as a template contains an
-insert keyword, SR$SSR includes the additional rules indicated by that
keyword. SR$SSR can process multiple nested inserts.

If the search rules file you are using as a template contains a -system
keyword, SR$SSR inserts the system default rules at the location in
your list of the -system keyword.

First Edition, Update 1 7-64

SR$SSR SEARCH RULES

When performing an overwrite of an existing list, SR$SSR copies each
rule's locator pointer value from the old list to the identical rule
(if it exists) in the new list. This matching of search rules is
case-sensitive. Refer to SR$SETL for details on locator pointers.

Examples

The following two examples perform identical operations; the first
example is written in PL/I, the second in FORTRAN 77. Each of these
examples sets the MYLIST search list using the MYDIR>RULES.MYLIST.SR
search rules file. The overwrite argument instructs PRIMOS to delete
all prior user-specified rules set for MYLIST.

/* Sample PL/I program for the SR$SSR subroutine */
SET_SEARCH_RULES: PROCEDURE OPTIONS(MAIN);
DCL SR$SSR EXTERNAL ENTRY (CHAR(128) VAR, CHAR(32) VAR,

BIT(l) ALIGNED, CHAR(128) VAR, FIXED BIN, FIXED BIN);
DCL FILE CHAR(128) VAR STATIC INIT('MYDIR>RULES.MYLIST.SR');
DCL LIST CHAR(32) VAR STATIC INIT('MYLIST');
DCL OVERWRITE BIT(l) ALIGNED STATIC INIT('l'b);
DCL EPATH CHAR(128) VARYING;
DCL ELINE FIXED BIN;
DCL CODE FIXED BIN;
CALL SR$SSR(FILE, LIST, OVERWRITE, EPATH, ELINE, CODE);
IF (CODE = 0)
THEN

PUT SKIP LISTCThe search list has been set');
ELSE

BEGIN;
PUT SKIP LIST('Error code:', CODE);
PUT SKIP LIST('Error path:', EPATH);
PUT SKIP LIST('Error line:', ELINE);
END;

PUT SKIP;
END SET_SEARCH_RULES;

C Sample FORTRAN 77 program for the SR$SSR subroutine
C Declarations

INTEGER*2 FILESIZE, FILEPLUS(128)
CHARACTER*128 FILE
INTEGER*2'LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 OVERWRITE
INTEGER*2 EPSIZE, EPPLUS(128)
CHARACTER*128 EPATH
INTEGER*2 ELINE
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (FILESIZE, FILEPLUS(1))
EQUIVALENCE (FILEPLUS(2), FILE)

7-65 First Edition, Update 1

SUBROUTINES, VOLUME II SR$SSR

EQUIVALENCE (LSIZE, LPLUS(1)) ^
EQUIVALENCE (LPLUS(2), LIST) '
EQUIVALENCE (EPSIZE, EPPLUS(1))
EQUIVALENCE (EPPLUS(2), EPATH)

C Assignments
FILE(1:21) = 'MYDIR>RULES.MYLIST>SR'
FILESIZE = 21
LIST(1:6) = 'MYLIST'
LSIZE = 6
OVERWRITE = : 100000

C Subroutine call
CALL SR$SSR(FILEPLUS, LPLUS, OVERWRITE, EPATH, ELINE, CODE)
IF (CODE.NE.0) GO TO 10
PRINT *, 'The search list has been set'
CALL EXIT

C Error processing
10 PRINT *, 'Error code: ', CODE

PRINT *, 'Error path:', CODE
PRINT *, 'Error line: ', CODE
CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

First Edition, Update 1 7-66

r APPENDIXES

&\

^

A
Obsolete File System

Subroutines

This appendix contains descriptions of several File System subroutines
that are considered obsolete and have been replaced by newer ones. The
new subroutines either perform the functions of the older ones more
efficiently, or have enhanced functionality, or both. In many cases
the calls to the new subroutines are simpler than those of the older
ones.

For programs written for use with Rev. 20.2 and later revisions, Prime
encourages the use of the new subroutines in place of those described
in this appendix. The older ones are presented here only for reference
in maintaining programs that currently call them. When replacing these
programs, you should consider using the newer calls, described
elsewhere in this volume.

A-l First Edition

SUBROUTINES, VOLUME II

ATCH$$

Note

In new programming, use of the AT$ subroutines in place of the
ATCH$$ subroutine is recommended. The AT$ subroutines are
described in Chapter 3.

Purpose

ATCH$$ attaches to a UFD and, optionally, makes it the home UFD. In
attaching to a directory, the subroutine ATCH$$ specifies where to look
for the directory. ATCH$$ specifies that a User File Directory (UFD)
is in the Master File Directory (MFD) on a particular logical disk, in
a subdirectory in the current UFD, or in the home UFD.

Usage

CALL ATCH$$ (ufdnam, namlen, ldisk, passwd, key, code)

ufdnam The name of the UFD to be attached (integer array) .
If key is K$IMFD and ufdnam is the key K$HOME, the
home UFD is attached. If the reference subkey is
K$ICUR, ufdnam is the name of an array that
specifies the name of the UFD to attach to.

namlen

ldisk

The length in characters (1-32) of ufdnam
(INTEGER*2). namlen may be greater than the length
of ufdnam provided that ufdnam is padded with the
appropriate number of blanks. If ufdnam = K$HOME,
namlen is disregarded.

The number of the logical disk to be searched for
ufdnam when key = K$IMFD (INTEGER*2). The parameter
ldisk must be a logical disk that is started up.
Other values for ldisk are:

K$ALLD Search all started-up local logical
devices in logical device order (then
likewise all such remote devices), and
attach to the UFD in which ufdnam
appears in the MFD of the lowest
numbered logical device.

K$CURR Search the MFD of the disk currently
attached.

First Edition A-2

ATCH$$ OBSOLETE SUBROUTINES

passwd A three-halfword integer array containing one of the
passwords of ufdnam. passwd can be specified as 0
if attaching to the home UFD. If the reference
subkey is K$IMFD or K$ICUR, passwd must be the name
of a three-halfword array that specifies one of the
passwords of ufdnam. If passwd is blank, it must be
specified as three halfwords, each containing two
blank characters.

key Composed of two subkeys whose values are added
together, a REFERENCE subkey and a SETHOME subkey
(INTEGER*2). The REFERENCE subkey values are as
follows:

K$IMFD Attach to ufdnam in MFD on ldisk.

K$ICUR Attach to ufdnam in current UFD (ufdnam
is a subdirectory).

The SETHOME subkey, K$SETH, may be added to the
REFERENCE subkey as K$IMFD+K$SETH, which will set
the current UFD to the home UFD after attaching. If
the REFERENCE subkey is K$ICUR, or if ufdnam is 0,
ldisk is ignored, and it is usually specified as 0.

code An INTEGER*2 variable set to the return code,

Discussion

To access files, the file system must be attached to some User File
Directory (UFD). This implies that the file system has been supplied
with the proper file directory name and either the owner or nonowner
password, and the file system has found and saved the name and location
of the file directory. After a successful attach, the name, location
and owner/nonowner status of the UFD is referred to as the current UFD.
As an option, this information may be copied to another place in the
system, referred to as the home UFD. The ATCH$$ subroutine does not
change the home UFD unless the user specifies a change in the
subroutine call. The user gets owner status or nonowner status
according to the password used. The owner of a file directory can
declare, on a per-file basis, what access a nonowner has over the
owner7 s files. The nonowner password may be given only under PRIMOS
and PRIMOS III.

A BAD PASSWD error condition
PRIMOS command level is entered,
unchanged.

does not return to the user's program.
Other errors leave the attach point

A-3 First Edition

SUBROUTINES, VOLUME II ATCH$$

Examples

1. Attach to home UFD:

CALL ATCH$$ (K$HOME, 0, 0, 0, 0, CODE)

2. Attach to UFD named 'G.S.PATTON', password 'CHARGE' in current
UFD:

CALL ATCH$$('G.S.PATTON', 10, K$CURR, 'CHARGE', K$ICUR, CODE)

First Edition A-4

OBSOLETE SUBROUTINES

f- CREA$$

Note

In new programming, use of the DIR$CR subroutine in place of
the CREA$$ subroutine is recommended. This subroutine is
described in Chapter 4.

Purpose

CREA$$ creates a new sub-UPD in the current UFD and initializes the new
entry. The new sub-UFD is of the same type (ACL or non-ACL) as the
current UFD.

Usage

DCL CREA$$ ENTRY (CHAR NONVARYING(32) , FIXED BIN, CHAR N0NVARYING(6) ,
CHAR N0NVARYING(6), FIXED BIN)

CALL CREA$$ (filnaxn, namlen, owner-pw, nonowner-pw, code)

filnam

namlen

owner-pw

nonowner-pw

code

The name to be given the new UFD (input) .

The length in characters (1-32) of filnam (16-bit
integer).

A six-character array containing the owner password
for the new UFD. If opwner-pw(l) = 0 , the owner
password is set to blanks, owner-pw is ignored if
an ACL directory is being created.

A six-character array containing the nonowner
password for the new UFD. If nonowner-pw(1) is 0,
the nonowner password is set to zeros. Any password
given to ATCH$$ matches a nonowner password of
zeros. nonowner-pw is ignored if an ACL directory
is being created.

A 16-bit integer variable to be set to the return
code from CREA$$. Possible values follow.

E$BNAM The supplied name is illegal.

E$BPAR The name length is illegal.

E$EXST An object with the given name already
exists.

A-5 First Edition

SUBROUTINES, VOLUME II CREA$$

E$NRIT Add rights were not available on the
current directory.

E$WTPR The disk is write-protected.

E$NINF An error occurred, and list rights were
not available on the current directory.

Discussion

E$NATT The current attach point is invalid.

CREA$$ creates a new subdirectory in the current directory. The new
subdirectory is of the same type as its parent. Thus, if CREA$$ is
used in an ACL directory, it will create an ACL directory. If used in
a password directory it will create a password directory.

Password directories may be explicitly created with the CREPW$ routine.
There is no special routine to create ACL directories, since CREA$$
will always create an ACL directory within an ACL directory, and an ACL
directory may not have a password directory as its parent.

Passwords can be set such that the password cannot be entered from the
keyboard and the directory is accessible only from a program. In any
case, passwords can be at most six characters long. Passwords shorter
than six characters must be padded with blanks for the remaining
characters. Passwords are not restricted by filename conventions and
may contain any characters or bit patterns. It is strongly recommended
that passwords do not contain blanks, commas, or the characters = ! '
@ { } [] () ; A < > o r lowercase characters. Passwords should not
start with a digit. If passwords contain any of the above characters
or begin with a digit, the passwords may not be given on a PRIMOS
command line to the ATTACH command.

Since the subroutine SRCH$$ does not allow creation of a new UFD,
CREA$$ must be used for this purpose. Under program control, CREA$$
allows the action of the PRIMOS CREATE command.

CREA$$ requires add access on the current UFD.

Example

To create a new UFD with default passwords of blanks for owner and 0
for nonowner:

CALL CREA$$ ('NEWUFD', 6, 0, 0, CODE)

First Edition A-6

OBSOLETE SUBROUTINES

CREPW$

Note

In new programming, use of the DIR$CR subroutine in place of
the CREPW$ subroutine is recommended. This subroutine is
described in Chapter 4.

Purpose

CREPW$ c r e a t e s a new password d i r e c t o r y .

Usage

DCL CREPW$ ENTRY (CHAR<32), FIXED BIN, CHAR(6), CHAR(6), FIXED BIN);

CALL CREPW$ (name, name-length, owner-pw, non-owner-pw, code);

name

name-length

owner-pw

nonowner-pw

code

Name of the directory to be created (input).

Length of the name in characters (input).

Password which must be used to attach with owner
rights (input).

Password that must be used to attach with nonowner
rights (input).

Standard error code (output). Possible values are:

E$BNAM The supplied name is illegal.

E$BPAR The name length is illegal.

E$EXST An object with the given name already
exists.

E$NRIT Add rights were not available on the
current directory.

E$WTPR The disk is write-protected.

E$NINF An error occurred, and list rights were
not available on the current directory.

E$NATT The current attach point is invalid.

A-7 First Edition

SUBROUTINES, VOLUME II CREPW$

Discussion

CREPW$ is used to create new directories. It always creates a password
directory. Add access is required on the current directory.

First Edition A-8

OBSOLETE SUBROUTINES

RDEN$$

Note

In new prograitaning, use of the DIR$RD or ENT$RD subroutine in
place of the RDEN$$ subroutine is recommended. These
subroutines are described in Chapter 4.

Purpose

RDEN$$ positions in or reads from a UFD.

Usage

CALL RDEN$$ (key, funit, buffer, buflen, rnw, filnam, namlen, code)

key A 16-bit integer variable specifying the
be taken. Possible values are:

action to

K$READ Advance to the start of the first or
next UFD entry and read as much of the
entry as will fit into buffer. Set rnw
to the number of halfwords read.

K$NAME Position to the start of the entry
specified by filnam and namlen. Read
as much of the entry as will fit into
buffer. Set rnw to the number of
halfwords read. If the entry is not in
the directory, the code E$FNTF is
returned. If namlen is 0, the next
entry is returned.

K$GPOS Return the current position in the UFD
as a 32-bit integer in filnam.

K$UPOS Set the current position in the UFD
from the 32-bit integer in filnam.
This key should be used only with a
position of 0.

K$POSN Return access category entries.

{*
A-9 First Edition

SUBROUTINES, VOLUME II RDEN$$

funit

buffer

buflen

mhw

filnam

namlen

code

A unit on which a UFD is currently opened for
reading (INTEGER*2). (A UFD may be opened with a
call to SRCH$$.)

A one-dimensional array into which entries of the
UFD are read.

The length, in halfwords, of buffer (INTEGER*2) set
to a value of 24.

An INTEGER*2 variable that will be set to the number
of halfwords read.

An INTEGER*4 variable used for keys of K$GPOS and
K$UPOS, or a name (character string) for use with
K$NAME.

An INTEGER*2 variable specifying the length in
characters (0-32) of filnam. This variable is only
used with K$NAME.

An INTEGER*2 variable to be set to the return code:

E$FNTF The entry is not in the directory.

E$EOF No more entries.

E$BFTS Buffer is too small for the entry.

Discussion

RDEN$$ is used to read entries from a UFD. mhw half words are returned
in buffer, and the file unit position is advanced to the start of the
next entry.

Directory positioning

Caution

is obsolete and should not be necessary.

In the file management system, UFDs are not compressed when files are
deleted, and vacant entries may be reused. Thus, a newly created file
is not necessarily found at the end of a UFD.

The complete format of currently defined entries is given in Figure A-1
and discussed below for revisions before 19. (For Rev. 19 format, see
DIR$RD.) All numbers are decimal unless preceded by a colon (:).

First Edition A-10

RDEN$$ OBSOLETE SUBROUTINES

17
18
19
20
21
22
23

ECW

M

PROTEC

NDACL?

FILTYP

DATMOD

TIMMOD

RESERVED

RESERVED

Entry Control Word (type/length)

Filename (blank-padded)

Protection (owner/nonowner)

Non-default ACL

File type * (end of entry for type = 1)

Date last modified

Time last modified

Reserved for future use

Reserved for future use

File Entry Format
Figure A-l

ECW

FILENAME

PROTEC

Entry Control Word. An ECW is the first halfword in
any entry and consists of two 8-bit subfields. The
high-order eight bits indicate the type of the
entry, the low-order eight bits give the length of
the entry in halfwords including the ECW itself.
Possible values of the ECW are as follows:

:003030 Type=3, length=24. A type of 3
indicates an access category UFD entry.
All the above information is returned.

:001030 Type=2, length=24. Type=2 indicates a
new partition UFD entry. All the above
information is returned. Reserved
fields should be ignored.

User programs should ignore any
entry-types that are not recognized.
This allows future expansion of the
file system without unduly affecting
old programs.

Up to 32 characters of filename, blank-padded.

Owner and nonowner protection attributes. The owner
rights are in the high-order eight bits, the
nonowner in the low-order eight bits. The meanings
of the bit positions are as follows (a set bit
grants the indicated access right):

A-ll First Edition

SUBROUTINES, VOLUME II RDEN$$

1-5,9-13 Reserved for future use

6.14 Delete/truncate rights

7.15 Write-access rights

8.16 Read-access rights

NON_DEFAULT_ The high-order bit is 1 if this UFD entry is pro-
ACL tected by a specific ACL or access category, 0 if it

is protected by the default ACL. Bits 2-16 are
reserved.

FILTYP On a new partition, the low-order eight bits
indicate the type of the file as follows:

0 SAM file
1 DAM file
2 SAM segment directory
3 DAM segment directory
4 UFD
6 Access category

On an old partition, the file type is invalid. The
file must be opened with SRCH$$ to determine its
type.

Of the high-order eight bits, six are currently
defined as follows:

bit 1 Set only for the BOOT and DSKRAT files,
if they are on a storage module disk.

bit 2 The dumped bit. This bit can be set by
a call to SATR$$ and is reset whenever
the file is modified. This bit is used
by the utility program that dumps only
modified files to magnetic tape. Users
are normally not interested in this
bit.

bit 3 This bit is set by PRIMOS II when it
modifies the file and reset by PRIMOS
(and PRIMOS III) when it modifies the
file. If this bit is set, the
time-date field for the file will not
be current because PRIMOS II doesn't
update the date/time stamp when it
modifies a file.

First Edition A-12

RDEN$$ OBSOLETE SUBROUTINES

bit 4 This bit is set to indicate that this
is a special file. The only special
files are BOOT, MFD, BADSPT, and the
DSKRAT file which has the name
packname. This bit, and this bit only
is valid on both new and old-style
partitions.

bits 5-6 Setting of the read/write
below.)

lock. (See

DATMOD

TIMMOD

The date on which the file was last modified. The
date, which is valid only on new partitions, is held
in the binary form YYYYYYYMMMMDDDDD, where YYYYYYY
is the year modulo 100, MMMM is the month, and DDDDD
is the day.

The time at which the file was last modified. The
time, which is valid only in new partitions, is held
in binary seconds-since-midnight divided by four.

The Read/Write Lock

The PRIMOS file system supports individual values of the read/write
lock (RWLOCK) on a per-file basis, for those files residing on new
partitions. The read/write lock is used to regulate concurrent access
to the file, and was formerly alterable only on a system-wide basis.

The meaning of the lock values is:

Value

0

1

2

3

B i t s 5,6

0 , 0

0 , 1

1,0

1 ,1

Meaning

Use system-wide RWLOCK to regulate
concurrent access.

Allow arbitrary readers or one writer.

Allow arbitrary readers and one writer,

Allow arbitrary readers and arbitrary
writers.

New files are initially created with a per-file read/write lock of 0.

UPDs do not have user-alterable read/write locks, though segment
directories do. Files in directory have the per-file read/write lock
of the segment directory.

The per-file read/write lock value is read by RDEN$$. It is set by a
SATR$$ call with a key of K$RWLK. The desired value is supplied in

A-13 First Edition

SUBROUTINES, VOLUME II RDEN$$

bits 15 and 16 of ARRAY (1), the remaining bits of which must be 0. On
old partitions, the SATR$$ call fails with an error code of E$OLDP.
Owner rights to the containing UPD are required, otherwise the call
fails with an error code of E$NRIT. An attempt to set the lock value
of a UPD fails with an error code of E$DIRE. If the SATR$$ call
requests a lock value which is more restrictive than the current usage
of the file, the file's lock value is changed and current users of the
file are unaffected, but any new openings subsequently requested are
governed by the new lock value. It is unspecified what happens when
bits 1-13 of ARRAY(1) are not 0.

The commands MAGSAV and MAGRST properly save and restore the per-file
read/write lock along with the file itself. Existing backup tapes
without saved read/write locks on them are restored with read/write
locks of 0, so the system-wide RWLOCK setting continues to control
access to such files.

The COPY command with the -RWLOCK option copies the per-file read/write
lock setting along with the file.

Examples

1. Read next entry from new or old UFD:

100 CALL RDEN$$ (K$READ, funit, ENTRY, 24, RNW, 0, 0, CODE)
IF (CODE .NE. 0) GOTO <error handler>
TYPE=RS(ENTRY(1),8) /* GET TYPE OF ENTRY JUST READ

2. Position to beginning of UFD:

CALL RDEN$$ (K$UPOS, funit, 0, 0, 0, 000000, 0, code)

3. This program reads directory entries sequentially using RDEN$$.

/it**/

rd$dir:
proc(dunit, rden_ptr, code);

del dunit bin, /* unit directory is open on */
rden_ptr pointer, /* pointer to rden_buffer */
code bin; /* standard error code */

%include 'syscom>keys.pll';
%include '*>insert>parameters.ins.spl';

del rden$$ entry(bin,bin, (24)bin,bin,bin,char{*),
bin, bin),

rden_buffer(24) bin based(rden_ptr),
rden_name_ext char(32) defined rdenjsuffer(2),
rden_name_local char(32);

First Edition A-14

RDEN$$ OBSOLETE SUBROUTINES

del i bin;
del trim builtin;

/A***/

call rden$$(k$read, dunit, rden_buffer, 24, i, " , 0, code);

rden_buffer(19) = rden_buffer(18); /* Copy protection keys */
rden_name_local = rden_name_ext; /* Copy name for trim (Since

the strings overlap). */
rden_ptr -> rden_buffer_.filename = trim(rden_name_local,' Ol'b);
return;
end rd$dir; /* rd$dir */
/***/

The next example reads directory entries by name using RDEN$$.

/•A***/

rd$ent:
proc(treename, rden_ptr, code);

del treename char(128) var, /* file info is wanted for */
rden_ptr pointer, /* pointer to rden_buffer */
code bin; /* standard error code */

%include 'syscom>keys.pll';
%include '*>insert>parameters.ins.spl';

del rden$$ entry(bin, bin, (24) bin, bin, bin, char(*),
bin, bin),

rden_buffer(24) bin based(rden_ptr),
rden_name_ext char(32) defined rden_buffer(2),
rden_name_local char(32);

del srch$$ entry(bin, bin, bin, bin, bin, bin);
del tatch$ entry(char(*) var, bin);
del path$ entry(char(*) var) returns(char(128) var);
del entry$ entry(char(*) var) returns(char(32) var);
del home$ entry();
del close$ entry(bin);
del (i,

icode,
unit) bin;

del tree bit(l) aligned,
filename char(32) var;

del (length,
trim,
addr,
index) builtin;

/A**/

A-15 First Edition

SUBROUTINES, VOLUME II RDEN$$

tree = (index(treename, '>') A=s 0);
if tree

then do;
call tatch$ (path$(treename), code);
if code A= 0

then go to clean_up;
end;

call srch$$(k$read + k$getu, k$curr, 0, unit, i, code);
if code A= 0

then go to clean_up;

filename = entry$(treename);
call rden$$ (k$name, unit, rdeaJbuffer, 24, i, (filename),

length(filename), code);

call close$(unit);

rden_i>uffer(19) = rden_buffer (18); /* Copy protection keys */
rden_jiame_local = rden_name_ext; /* Copy name for trim (Since

the strings overlap). */
rden_ptr -> rden_buffer_.filename = trim(rden_name_local, 'Ol'b);

clean_up:
if tree

then call home$;
return;

end rd$ent;

First Edition A-16

OBSOLETE SUBROUTINES

TSRC$$

Note

In new programming, use of the SRSFX$ subroutine in place of
the TSRC$$ subroutine is recommended. This subroutine is
described in Chapter 4.

Purpose

TSRC$$ is a subroutine to open a file anywhere in the PRIMOS file
structure.

Usage

CALL TSRC$$ (action+newfil, pathname, funit, chrpos, type, code)

action

newfil

A 16-bit key indicating the action to be performed.
Possible values are:

K$READ Open pathname for reading on funit.

KSWRIT Open pathname for writing on funit.

K$RDWR Open pathname for reading and writing
on funit.

K$DELE Delete file pathname.

K$EXST Check on existence of pathname.

K$CLOS Close pathname (not funit).

K$GETU Open pathname on an unused file unit
selected by PRIMOS. The unit number is
returned in funit.

K$VMR Open pathname for VMPA read.

A 16-bit key indicating the type of file to create
if pathname does not exist. Possible values are:

New threaded (SAM) file,
default.)

K$NSAM

K$NDAM New directed (DAM) file.

(This is

A-17 First Edition

SUBROUTINES, VOLUME II TSRC$$

pathname

funit

chrpos

K$NSGS New threaded (SAM) segment directory.

K$NSGD New directed (DAM) segment directory.

An array specifying a file in any directory or
subdirectory, packed two characters per halfword.

The number (1-12 6) of the file unit to be opened or
deleted (16-bit integer). funit is closed before
any action is attempted.

A two-element integer array for character position
set up as follows:

chrpos(1) On entry, set to contain the position
in the array pathname occupied by the
first character of the filename. (The
count starts at 0.) On exit, it will
be pointing one past the last
character that was part of the
pathname. A comma, new line, or
carriage return will terminate the
name, as will end of array. In case
of error, chrpos(1) points one past
the pathname component that caused the
error, chrpos(1) is always modified
by this subroutine, so it must be set
up before each call.

chrpos(2) The number of characters in
pathname array (16-bit integer).

the

type An integer variable set to the type of the file
opened, type is set only on calls that open a file;
it is unmodified for other calls. Possible values
for type are:

SAM file
DAM file
SAM segment directory
DAM segment directory
UFD

code A 16-bit integer variable set to
If no errors, code is 0.

the return code.

First Edition A-18

B
Data Type

Equivalents

To call a subroutine from a program written in any Prime language, you
must declare the subroutine and its parameters in the calling program.
Therefore, you must translate the PL/I data types expected by the
subroutine into the equivalent data types in the language of the
calling program.

The table that follows shows the equivalent data types for the Prime
languages BASIC/VM, C, COBOL 74, FORTRAN IV, FORTRAN 77, Pascal, and
PL/I. The leftmost column lists the generic storage unit, which is
measured in bits, bytes, or halfwords for each data type. Each storage
unit matches the data types listed to the right on the same row. The
table does not include an equivalent data type for each generic unit in
all languages. However, with knowledge of the corresponding machine
representation, you can often determine a suitable workaround. For
instance, to see if you can use a left-aligned bit in COBOL 7 4, you
could write a program to test the sign of the 16-bit field declared as
COMP. In addition, if a subroutine parameter consists of a structure
with elements declared as BIT(n), it can be declared as an integer in
the calling program. Read the appropriate language chapter in the
Subroutines Reference Guide, Volume I before using any of the
equivalents shown in the table.

Note

The term PL/I refers both to full PL/I and to PL/I Subset
(PL/I-G).

B-l First Edition, Update 1

SUBROUTINES, VOLUME II

Table B-l
Data Type Equivalents

5 a.

"a
o
CO

8.

z
< r
z

i

o

o

z

If
go

w

o

FI
X

E
D

 B
IN

FI

X
E

D

B
IN

(1
5)

CD g

S LU

CC —I
LU <
CD O

S3

CM

oc k. _ i
m LU <
CD CD O
LLJUJg

T- O
a. 5T«
% CO o

o o_

to a>

h-
z

a>
O)

c

CO

FI
X

E
D

B

IN
(3

1)

cc
111
O

z

CD
Z

2

DC DC -J l l
111 LU < <
CD CD O O

SS93

*
DC
111
CD
LU
h -
Z

O Q.

z

a>

a>
c

15
CM
CO

• So"

a. «*? 5 CO 0
6 0 S :
O a.

k>
to

a>
c

£
l •<*

U3

FL
O

A
T

B

IN

FL
O

AT

B
IN

(2
3)

<
LU
CC

*
_ l _ l < <
LU LU
CC DC

«
_ l _ l < <
LU HI
DC DC

1

a.

0

13
**-

_ J
<
LU
OC

c
0
'«

£ a
. t ; 03

•9g>
CM . £
CO w

FL
O

A
T

B

IN
(4

7)

_ i
<
LU
CC
CD

z

2

CO

*
<
LU
CC

00

*
_ l
<
LU
OC

CM
1

0.
§

8

CD
X)
3
O

00
l l
<
LU
CC

c
O
'«

_ '0
To 2>
0 Q.

J*

CD

*
_ l

<
LU
CC

c
0

0 0

00 (0
CM 3
* - CT

1 —

H h-
CQ CD

0
sz
w

O .
LU
Z

— CD
I^_i
h- <

z
<
HI
_J
O
O
CD

to

TJ
CD
C

"ro
1

First Edition, Update 1 B-2

I
< J O

n
CO
n-
w a
H-
rt
H-
O
13

9
(0

Generic
Unit

Bit string

Fixed-length
character string

Fixed-length
digit string

Fixed-length
digit string,
2 digits per byte

Varying-length
character string

32-bit pointer

48-bit pointer

BASIC/VM
SUB FORTRAN

INT

C

unsigned
int

char;

char NAME[n];
char 'NAME;

Pointer
(32IX-mode)

Pointer
(64V-mode)

COBOL
74

DISPLAY
PICA(n)
PICX(n)
FILLER

DISPLAY
PIC 9(n)

COMP-3

FORTRAN
IV

FORTRAN
77

CHARACTER
*n

Pascal

SET

CHAR
PACKED

ARRAY[1..nJ
OFCHAR

STRING[n]

Pointer

PL/I

BIT(n)

CHAR(n)

PICTURE

FIXED
DECIMAL

CHAR(n)
VARYING

POINTER
OPTIONS
(SHORT)

POINTER

Notes
For a discussion of possible workarounds for some of the empty boxes in this table as well as a description

of generic units for PMA, refer to the appropriate language chapter in the Subroutines Reference Guide, Volume I.

The BASIC/VM column lists FTN data types to be declared in the SUB FORTRAN statament in a BASIC/VM program.

a H3
pi oj
n- tr 0) M

0
i-3

»< 00
13 1
<T> I - 1

M - N

£8
H- D
< rt
W H-
H 3
<t> e
3 (D
rt a
CO "- '

D
>
^ >
i-3
K
»tf
n
w
o
a H
<
> t->
ca 2
»-3
en

c
Argument Parsing by the

CL$PIX Subroutine

OVERVIEW

The CL$PIX subroutine allows a program to process arguments on a
command line, using the rules explained for arguments in the CPL User's
Guide.

Using a description of the expected arguments in the form of a list of
keywords, CL$PIX builds a structure consisting of a number of elements,
or pixels, containing the arguments in a readily accessible form for
the routine that is to use the arguments.

CL$PIX OPERATING MODES

CL$PIX operates in either of two modes: a normal mode for routines
that call for and use arguments entirely within themselves, and CPL
mode for routines that are called by CPL programs and pass the parsed
arguments back to the calling program. The two modes differ
principally in the way in which they point to the parsed argument
structure. They are described in detail on the following pages.

^

C-l First Edition

SUBROUTINES, VOLUME II

The Picture in Normal Mode

This mode is used by most callers of CL$PIX. It is intended to be used
by a command to process its command-level arguments into a form that it
can use for decision making or further processing. It is a CHAR(*)VAR
string, and must be scalar (singly-dimensioned) .

Basic Format; The syntax of the normal mode picture is very similar to
that of the CPL &ARGS directive, the major difference being that no
variable names are allowed (because the results are not being stored in
local command variables).

The picture looks like:

argument group [; argument group]; ...; end

Each argument group defines either an object argument, or an option
argument and its associated objects if any. The end token is required
to delimit the end of the picture string, and must be last in the
string.

First, a word about lexical format. Uppercase and lowercase are
equivalent anywhere except inside quotes. Extra blanks may appear
anywhere that a single blank is allowed or required. Blanks are not
required to precede or follow other delimiters, such as ";", but they
may be present if desired. Single character string tokens that contain
blanks or delimiters must be enclosed in quotes, but the quotes are not
part of the token itself. The delimiter characters are:

blank , ; = () * %

Other punctuation or special characters should also be quoted.

If the picture is supplied in the form of an array of varying strings,
an implicit lexical blank separates elements of the array. That is,
when the end of any element is reached, a blank is recognized,
regardless of the length of that particular element.

Object Argument Groups: As in the CPL &ARGS directive, all argument
groups that define object arguments must appear before the first
argument group that defines an option argument.

The simplest argument group simply declares the data type of the object
argument. CL$PIX supports the following data types:

char Arbitrary character string up to 80 bytes long,
mapped to uppercase.

charl Arbitrary character string up to 80 bytes long, not
mapped.

First Edition C-2

CL$PIX ARGUMENT PARSING

tree

entry

id

password

dec

oct

hex

date

ptr

REST

UNCL

PRIMOS pathname up to 128 bytes long, mapped to'
uppercase. Wildcard characters are allowed.

Filename, up to 32 bytes long, mapped to uppercase.
Wildcard characters are allowed.

PRIMOS user or project identifier, up to 32 bytes
long, mapped to uppercase. Must begin with a
letter, and contain only letters, digits, or the
special characters **$", ".**, or "_".

PRIMOS user login password, up to 16 bytes long,
mapped to uppercase. May contain any characters
except PRIMOS reserved characters.

Decimal integer with optional sign, in the range
(2**31 - 1) to (-2**31 + 1).

Octal integer with optional sign, in the range
(2**31 - 1) to (-2**31 + 1).

Hexadecimal integer, unsigned, in the range 0 to
(2**32 - 1).

A calendar date and time in one of the standard
formats:

ISO (YY-MM-DD.HH:MM:SS.dow)

USA (MM/DD/YY.HH:MM:SS.dow)

Visual (DD Mmm YY HH:MM:SS day-of-week)

The day of week field is always ignored (but checked
for legality); time fields default to 0; omitted
YY defaults to current year; if entire date and "."
are omitted, defaults to current date. The
converted representation is the PRIMOS file system
format.

PRIMOS virtual address in the form S/W, where S is
the octal segment number and W is the octal word
number.

Rest of command line, up to 160 bytes long. (See
below for explanation.) Uppercase and lowercase are
distinguished. See the discussion of data type REST
below.

String of "unclaimed" tokens; that is, all tokens
on the command line not accounted for elsewhere in
the picture. Up to 160 bytes long. Uppercase and
lowercase are distinguished. See the discussion of
data type UNCL below.

C-3 First Edition

SUBROUTINES, VOLUME II

A simple picture might then be:

char; end

which defines a command line consisting of a single character string
argument that will be mapped to uppercase. A more complex picture
might be the following.

tree; dec; charl; end

This specifies three arguments: a treename, followed by a decimal
integer, followed by a character string (unmapped).

Assignment to the Output Structure: When the command line is parsed
against the picture, the structure pointed to by struc-ptr is filled
in. The shape of the structure is determined by the picture: each
object argument, option argument, or option argument parameter
generates a member of the structure. The data type of each member is
determined by the corresponding data type in the picture. The
correspondence is:

Data Type

char
charl
tree
entry
id
password
dec
oct
hex
date
ptr
rest
UNCL

Examples are:

Picture

char; end

PL/1 Type

char(80) var
char(80) var
char(128) var
char(32) var
char(32) var
char(16) var
fixed bin(31)
fixed bin(31)
fixed bin(31)
fixed bin(31)
ptr options(short)
char(160) var
char(160) var

Structure

del 1 struc

FORTRAN Type

INTEGER(41)
INTEGER(41)
INTEGER(65)
INTEGER(17)
INTEGER(17)
INTEGER(9)
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER(81)
INTEGER(81)

/

tree; dec; charl; end

2 char_arg char(80) var;

del 1 struc,
2 tree_arg char(128) var,
2 dec_arg fixed(31),

2 charl_arg char(80) var;

First Edition C-4

CL$PIX ARGUMENT PARSING

{^** Use of Data Types REST and UNCL: These two data types cause special
processing to occur.

The UNCL data type can be used only with an object argument, not an
option argument. Any token on the command line that does not match (is
not "claimed" by) any part of the picture is added to the UNCL argument
if one has been defined. A single blank separates each token added.
If no UNCL argument is defined, unclaimed tokens are erroneous and the
user's command line is in error. An example is shown under the option
argument section, since with only object arguments in the picture and
on the ' command line, the REST and UNCL arguments perform the same
function. This is because scanning proceeds left to right, and all
arguments on the command line that also appear in the picture must
necessarily be claimed.

The REST data type can be used with either kind of argument; option
arguments are explained below. When used with an object argument, if
the REST argument is reached in the picture and more text remains on
the command line, the entire remaining text is assigned to the REST
argument. For example, if the picture is

dec; tree; rest; end

and the structure is

del 1 strue,
2 dec_arg fixed(31),
2 tree_arg char(128) var,
2 rest_arg char(160) var;

then, for the command line

786 a>b>c>d foo 99 zot>nil

786 is assigned to struc.dec_arg, a>b>c>d to struc.tree_arg, and foo 99
zot>nil to struc.rest_arg.

Default Values: What happens if an argument specified in the picture
is not supplied by the user? In the absence of a default value
specified as described below, the corresponding structure element is
assigned a "default default" value, which is the null string for string
types, 0 for arithmetic types, and null () for the pointer type.

The picture may specify some other default value. The syntax is:

data type = default-value;

C-5 First Edition

SUBROUTINES, VOLUME II

For example: ^

tree = fi.list; dec = 99; date = 81-1-1; end

del 1 struc,
2 tree_arg char(128) var,
2 dec_arg fixed (31),
2 date_a rg f ixed(31);

(null command line)

would assign O.LIST (note uppercase conversion) to struc.tree_arg, 99
to struc.decarg; and 81-01-01.00:00:00 (in file system format) to
struc.date_arg•

Repeat Counts: To save typing, a repeat count feature is included in
the syntax. To use it, simply prefix the argument group to be
duplicated with the repeat count followed by "*". For example:

5 * dec = -1; 2 * char = foo; end

del 1 struc,
2 dec_args(5) fixed(31),
2 char_args(2) char(80) var;

The repeat count must be positive and less than 1000.

Note the use of arrays in the structure above. This is not required;
one could employ five scalar fixed(31) members with different names in
place of decargs, for example.

Option Arguments: CL$PIX allows convenient handling of PRIMOS command
line option arguments. An argument group that specifies an option
argument is distinguished from an object argument group by beginning
with a **-". The general form is:

-namel, -name2, ..., -namen { objl obj2 ...};

The -names are the names of the option argument as the user will use
them on the command line. Multiple names are allowed to enable the
definition of synonyms and abbreviations.

The simplest option argument has no parameters. An example is:

-listing, -1

del 1 struc,
2 listing_arg bit(l) aligned;

First Edition C-6

CL$PIX ARGUMENT PARSING

Note

The data type used for all option arguments is controlled by a
flag in the keys argument to CL$PIX. (See above.) Here,
assume that keys.pil_flag is 'l'b.

The struc.Ii3tinq_arcr will be set to 'l'b if -LISTING or -L appears on
the command line; otherwise it is set to 'O'b. There is no default
value for a simple option argument: it either is or is not on the
command line. Hence the M=" syntax is not relevant here.

If an option argument is to have parameters, they are the objects in
the general form, and are specified using the syntax for object
argument groups, except that no semicolon is used between objects.
Suppose that option -LISTING is to accept a treename parameter. The
following could be used:

-listing, -1 tree = listing.list; end

del 1 struc,
2 listing bit(l) aligned,
2 listing_tree char(128) var;

If a treename follows -LISTING on the command line, it is assigned to
struc.listing_tree; otherwise struc.listing_tree is assigned
LISTING.LIST. Note that the default values are assigned to parameters
of an option even if that option is not given on the command line.

As another example, an option -RANGE is to take two integer parameters:

-range dec = 0 dec = 99999; end

del 1 struc,
2 range_bit(l) aligned,
2 range_lower fixed(31),
2 range_upper fixed(31);

-range 7 (command line)

struc.range, is 'l'b, struc.range_lower is 7, and struc.range_upper is
99999 (the default).

Using the REST Data Type with Option Arguments: The REST data type can
be used as the data type of the rightmost parameter of an option
argument. For example:

char; -string rest; -page dec = 1; end

C-7 First Edition

SUBROUTINES, VOLUME II

del 1 struc,
2 char_arg char(80) var,
2 string_flag bit(l) aligned,
2 string_rest char(160) var,
2 page_flag bit(l) aligned,
2 page_number fixed(31) ;

When the option -STRING is seen on the command line, the entire
remainder of the command is assigned to the REST argument, in this case
struc.string_rest. For example:

foo -page 17 -string abc def -page 0

assigns 'FOO' to struc.char_arg, 'l'b to struc.string_flag, 'abc def
-page 0' to struc.string_rest, 'l'b to struc.page_flag, and 17 to
struc. page_jiumber.

Note that CL$PIX (at least) is not confused by the second occurrence of
-page: it is part of struc.string_rest because it follows the -string
option.

Using the UNCL Data Type with Option Arguments: The data type UNCL may
only be assigned to an object argument, not to the parameter of an
option argument. However, it is possible for option arguments to be
unclaimed and hence added to the UNCL argument.

Consider the problem: write a command interface that accepts a
treename object argument and the option argument -time with an integer
parameter, but which accepts and passes on all other arguments to some
other interface.

A picture to do this is:

tree; UNCL; -time dec; end

del 1 struc,
2 tree_arg char(128) var,
2 UNCL_arg char(160) var,
2 time_flag bit(1) aligned,
2 time_number fixed(31);

Then the command:

a>b>c zot -lines 78 -time 88 def -zilch a b c

sets struc,tree_arg to 'A>B>C, struc.UNCL_arg to 'zot -lines 78 def
-zilch a b c ' , struc,time_flag to 'l'b, and struc.time_number to 88.
Note particularly that def is not a parameter of -time but an object
argument. Since the TREE argument was already accounted for, def was
unclaimed, the command:

-limits abc def -time 90 a>b>c

First Edition C-8

CL$PIX ARGUMENT PARSING

sets struc.tree_arg to 'A>B>C, struc.UNCL_arg to '-limits abc def,
struc.time_flag to 'l'b, and struc.time_number to 90.

Note

Why did struc.tree_arg not get assigned the value 'ABC or
'def'? Because of the rule given for UNCL above:

All parameters that follow an unclaimed option argument will be
considered unclaimed. This is because the picture contains no
information about an unclaimed option argument, and hence
CL$PIX cannot know how many parameters may follow it.

Thus all object arguments following an unclaimed option argument are
taken as parameters of that option, until a claimed option argument is
found.

Multiple Instances of an Option Argument; A picture may contain more
than one instance of the same option argument. It is recommended that
each instance contains exactly the same synonym or abbreviation names
for the option, though CL$PIX does not check for this.

When multiple instances are used, the semantics are that multiple
instances of the option on the command line are permitted, and will
appear in successive slots of the output structure. The usual use of
this capability is best illustrated by an example.

Suppose that a command accepts an option -select with one parameter;
for example, a string to search for in a file. It seems reasonable to
allow the command to search for multiple strings at once; hence the
desire for multiple instances of the option. A picture might be:

-select charl; -select charl; -select charl; end

which allows for three instances of -select. The structure is:

del 1 struc,
2 select_l bit(l) aligned,
2 select_l-char char(80) var,
2 select_2 bit(l) aligned,
2 select_2-char char(80) var,
2 select_3 bit(l) aligned,
2 select_3-char char(80) var;

The first -select encountered goes into struc.select_l, the second into
struc.select_2, and the third into struc.select_3. Note that the three
instances need not follow each other directly in the picture; and, if
they do not, they will not follow each other in the structure. Thus
the existence of multiple instances of an option does not alter the
usual left-to-right assignment of argument groups to structure member
slots.

C-9 First Edition

SUBROUTINES, VOLUME II

Any option argument that appears only once in the picture may appear at
most once on the command line.

Using Repeat Counts with Option Arguments: Repeat counts can be used
with option arguments in a fashion analogous to their use with object
arguments. They are simply a typing saver. Consider the "-select"
example above. An equivalent picture is:

3 * -select charl; end

That is, a repeat count used in this way declares multiple instances of
an option argument, together with its parameters. It is also possible
to use repeat counts on the parameters. Consider the following
picture:

3 * -limits 2 * dec = 0; end

It is the same as:

-limits dec = 0 dec = 0 ; -limits dec = 0 dec = 0;
-limits dec = 0 dec = 0 ; end

The Picture in CPL Mode

Syntax Differences: The syntax of the picture accepted in CPL mode is
exactly the same as that accepted by the CPL &ARGS directive. (In
fact, CPL uses CL$PIX in CPL mode to process the 4ARGS directive.) The
CPL Userfs Guide gives details on the syntax and parsing of the &ARGS
directive.

The salient differences between CL$PIX syntaxes in normal mode and CPL
mode are:

• Repeat counts are not allowed in CPL mode.

• Each object argument and option argument must be preceded by a
variable identifier terminated with a colon, thus:

path:tree; time_of_day:-time dec; unclaimed:UNCL

where path, time_of_day, and unclaimed are CPL local variable
names. The value of each argument is assigned to the local
variable whose name is prefixed to that argument.

• The end token is not used in CPL mode, and a semicolon is not
required after the last token.

• The maximum length of any argument value in CPL mode is 1024
characters, unlike normal mode where the limit depends on the
data type (80 for CHAR and CHARL, 160 for REST, and so on) .

First Edition C-10

CL$PIX ARGUMENT PARSING

Local Variable Storage Management; In CPL mode, it is quite possible
for CL$PIX to run out of room in the supplied Local Variables Area
while attempting to set the values of all the local variables involved.
If this happens, CL$PIX will return the error code E$ROOM.

It is the caller's responsibility at this point to allocate more space
for the Local Variables Area, and to call CL$PIX to redo the parse from
the start. This process may have to be repeated in a loop until enough
storage has been added to accommodate the values of all the local
variables involved.

Usage Differences; In CPL mode, the "end" keyword is not required to
appear at the end of the picture. For this reason, a picture array is
not allowed: the picture must be supplied as a one-dimensional
(scalar) varying string up to 1024 characters long.

Example for CL$PIX

The following example uses CL$PIX to parse a command line

test:
proc;

/* EXTERNAL ENTRY POINTS */

del cl$get entry (char(*)var, fixed bin, fixed bin),
cl$pix entry (bit(16) aligned, char(*)var, ptr, fixed bin,

char(*)var, ptr, fixed bin, fixed bin, fixed bin, ptr),
errpr$ entry (fixed bin, fixed bin, char(*), fixed bin, char(*),

fixed bin),
tnoua entry (char(*), fixed bin),
todec entry (fixed bin),
tnou entry (char(*), fixed bin);

/* INSERT FILES */

$Insert syscom>keys.ins.pll

/* LOCAL DECLARATIONS */

/ ^

del code fixed bin,
non_st_code fixed bin,
pix_index fixed bin,
bad_index fixed bin,
picture char(30) var,
pic_ptr ptr,
out_ptr ptr,
arg_line char(150) var;

/* standard error code */
/* cl$pix error code */

C-ll First Edition

SUBROUTINES, VOLUME II

del 1 args, ^ ^
2 dir char(128) var,
2 file char(32) var;

del 1 bvs based,
2 len fixed bin,
2 chars char(l);

/* PROMPT USER FOR ARGUMENTS */

call tnoua('Enter directory pathname and filename: ', 38);

/* READ IN ARGS TO CALL */

call cl$get (arg_line, 150, code);
if code A= 0

then call errpr$(k$nrtn, code, 'CANNOT READ ARGS', 16,
'test', 9);

else do;

/* SET UP DATA FOR CL$PIX */

picture =» 'tree; entry; end';
pic_ptr = addr(picture);
out_ptr = addr(args);

/* CALL CL$PIX TO PARSE ARGUMENTS */

call cl$pix('3'b3, 'test', pic_ptr, 30, arg_line, out_ptr,
pix_index, bad_index, non_st_code, null());

if non_st_code A= 0
then do;
call tnoua('CANNOT PARSE ARGS, error code = ', 32);
call todec(non_st_code);
call tnouC ', 1) ;
end;

/* OUTPUT ARGUMENTS READ IN */

else do;
call tnoua('Directory pathname = ', 21);
call tnou(addr(dir) -> bvs.chars, addr(dir) -> bvs.len);

call tnoua('File name = ', 12);
call tnou(addr(file) -> bvs.chars, addr(file) -> bvs.len);
end;

end;
end;

First Edition C-12

CL$PIX ARGUMENT PARSING

The above program gives the following output.

Enter directory pathname and filename:
<testpk>my__ufd my_file
Directory pathname = <TESTPK>MY_UFD
File name = MY_JILE

Calls Made by CL$PIX

TNCHK$, FNCHK$, IDCHK$, PWCHK$.

C-13 First Edition

INDEXES

A$xy series
ABSW

AC$CAT

AC$CHG
AC$DFT

AC$LIK

AC$LST
AC$RVT

AC$SET
ALC$RA

ALOC$S
ALS$RA

APSFX$
ASCS$$

ASCS$$

ASCSRT
ASNLN$

Index of
Subroutines

by Name

i i

i i
II

B-7
2-3

2-3

2-5
2-7

2-9

FORTRAN compiler addition functions. I
Return cold-start setting of ABBREV III
switch.

Add an object's name to an access
category.

Modify an existing ACL on an object.
Set ah object's ACL to that of its
parent directory.

Set an object's ACL like that of another II
object.

Obtain the contents of an object's ACL.
Convert an object from ACL protection
to password protection.

Set a specific ACL on an object.
Allocate space for EPF function return
information.

Allocate memory on the current stack.
Allocate space and set value of EPF
function.

Append a specified suffix to a pathname
Sort or merge sorted files (multiple
file types and key types).(V-mode)

Sort or merge sorted files (multiple IV 17-42
file types and key types).(R-mode)

Synonym for ASCS$$. See above.
Assign AMLC line. IV 8-21

II
II

II
III

III
III

II
IV

2-11
2-13

2-15
4-16

4-3
4-21

4-4
17-12

SX-1 First Edition, Update 1

SUBROUTINES, VOLUME II

ASSUR$

AT$

AT$ABS

AT$ANY

AT$HOM

AT$LDEV

AT$OR

AT$REL

ATCH$$

ATTDEV

Check process has given amount of III 2-22
timeslice left.

Set the attach point to a directory II 3-3
specified by pathname.

Set the attach point to a specified II 3-6
top-level directory and partition.

Set the attach point to a specified II 3-8
top-level directory on any partition.

Set the attach point to the home II 3-10
directory.

Set the attach point by top-level II 3-11
directory and logical disk number.

Set the attach point to the login II 3-13
directory.

Set the attach point relative to the II 3-15
current directory.

Set the attach point to a specified II A-2
directory.

Change a device assignment temporarily. IV 3-6

BIN$SR
BNSRCH
BREAK$
BUBBLE

Perform binary search in ordered table. Ill 6-21
Binary search. IV 17-48
Inhibit or enable BREAK function. Ill 3-50
Bubble sort. IV 17-50

C$xy series
C$A01
C$M05
C$M10
C$M11

C$M13

C$P02
C1IN
C1IN$
C1NE$
CALAC$

CASE$A
CAT$DL
CE$BRD

CE$DPT

CH$FX1

CH$FX2

FORTRAN compiler conversion functions
Control functions for user terminal.
Control functions for 9-track tape.
Control functions for 7-track tape.
Control functions for 7-track tape

(BCD).
Control functions for 9-track tape

(EBCDIC).
Control functions for paper tape.
Read a character.
Read a character.
Read a character, suppressing echo.
Determine whether an object is acces­

sible for a given action.
Convert, between upper- and lowercase.
Delete an access category.
Return caller's maximum command
environment breadth.

Return caller's maximum command
environment depth.

Convert string (decimal) to 16-bit
integer.

Convert string (decimal) to 32-bit
integer.

I
IV
IV
IV
IV

B-5
6-5
E-5
E-5
E-5

IV E-5

IV 6-12
III 3-5
III 3-7
III 3-9
II 2-17

IV 14-2
II 2-19
II 6-3

II 6-4

III 6-3

III 6-5

First Edition, Update 1 SX-2

INDEX BY NAME

CH$HX2

CH$MOD
CH$0C2

CHG$PW
CKDYN$

CL$FNR

CL$GET
CL$PIX

CLINEQ
CLNU$S
CLO$FN
CLO$FU

CLOS$A
CMADD
CMADJ
CMBN$S
CMCOF
CMCON
CMDET
CMDL$A
CMIDN
CMINV
CMLV$E
CMMLT
CMSCL
CMSUB
CMTRN
CNAM$$

CNIN$
CNSIG$
CNVA$A
CNVB$A
CO$GET

COM$AB

COMANL
COMB
COMI$$

COMLV$
COMO$$

CONTRL

CP$
CPUID$

Convert string (hexadecimal) to 32-bit III 6-7
integer.

Change the open mode of an open file. II 4-6
Convert string (octal) to 32-bit III 6-9
integer.

Change login validation password. Ill 2-23
Determine if routine is dynamically III 2-4
accessible.

Close a file by name and return a bit II 4-7
string indicating closed units.

Read a line.
Parse command line according to a
command line picture.

Solve linear equations (complex).
Close all sort units after SRTF$.
Close a file system object by pathname.
Close a file system object by file unit
number.

Close a file.
Matrix addition (complex).
Calculate adjoint matrix (complex).
Sort tables prepared by SETU$.
Calculate signed cofactor (complex).
Set constant matrix (complex).
Calculate matrix determinant (complex).
Parse a command line.
Set matrix to identity matrix (complex).
Calculate signed cofactor (complex).
Call new command level after an error.
Matrix multiplication (complex).
Multiply matrix by scalar (complex).
Matrix subtraction (complex).
Calculate transpose matrix (complex).
Change the name of an object in the
current directory.

Read a specified number of characters.
Continue scan for on-units.
Convert ASCII number to binary.
Convert binary number to ASCII.
Return information about command
output settings.

Expand a line using Abbreviations III 2-25
preprocessor.

Read a line into a PRIMOS buffer.
Generate matrix combinations.
Switch input between the terminal and a
file.

Call a new command level.
Switch output between the terminal and a
file.

Perform device-independent control IV 4-11
functions.

Invoke a command from a running program. II 6-9
Return model number of Prime computer. Ill 2-5

III
II

IV
IV
II
II

IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
III
IV
IV
IV
IV
II

III
III
IV
IV
III

3-10
6-5

18-7
17-29
4-9
4-10

15-2
18-9
18-11
17-27
18-13
18-16
18-18
16-2
18-20
18-22
5-5
18-24
18-26
18-28
18-30
4-11

3-13
7-19
14-4
14-6
3-52

III
IV
III

III
III

3-15
18-5
3-53

5-6
3-55

SX-3 First Edition, Update 1

SUBROUTINES, VOLUME II

CREA$$

CREPW$
CSTR$A
CSUB$A
CTIM$A
CV$DQS
CV$DTB
CV$FDA
CV$FDV
CV$QSD

Create a new subdirectory in the current
directory.

Create a new password directory.
Compare two strings for equality.
Compare two substrings for equality.
Return CPU time since login.
Convert binary date to quadseconds.
Convert ASCII date to binary format.
Convert binary date to ISO format.
Convert binary date to "visual" format.
Convert quadsecond date to binary

format.

II A-5

II
IV
IV
IV
III
III
III
III
III

A-7
10-2
10-4
12-2
6-12
6-13
6-15
6-17
6-19

D$xy series
D$INIT
DATE$
DATE$A
DELE$A
DIR$CR
DIR$LS

DIR$RD

DIR$SE

DISPLY
DKGEO$
DLINEQ

DMADD
DMADJ

DMCOF

DMCON

DMDET

DMIDN

DMINV

DMMLT

DMSCL

DMSUB
DMTRN

DOFY$A

DS$AVL

FORTRAN compiler division functions.
Initialize disk.
Return current date and time.
Return today's date, American style.
Delete a file.
Create a new directory.
Search for specified types of entries
in a directory open on a file unit.

Read sequentially the entries of a
directory open on a file unit.

Return directory entries meeting caller-
specified selection criteria.

Update sense light settings.
Register disk format with driver.
Solve a system of linear equations

(double precision).
Matrix additions (double precision).
Calculate adjoint matrix (double
precision).

Calculate signed cofactor (double
precision).

Set matrix to constant matrix (double
precision).

Calculate determinant (double
precision).

Set matrix to identity matrix (double
precision).

Calculate inverted matrix (double
precision).

Matrix multiplication (double
precision).

Multiply matrix by a scalar (double
precision).

Matrix subtraction (double precision) .
Calculate transpose matrix (double
precision).

Return today's date as day of year
(Julian).

Return data about a disk partition.

I
IV
III
IV
IV
II
II

II

II

III
IV
IV

IV
IV

IV

IV

IV

IV

IV

IV

IV

IV
IV

IV

III

B-7
5-13
2-8
12-3
15-3
4-15
4-17

4-24

4-29

10-3
5-18
18-7

18-9
18-11

18-13

18-16

18-18

18-20

18-22

18-24

18-26

18-28
18-30

12-4

2-51

First Edition, Update 1 SX-4

INDEX BY NAME

DS$ENV

DS$UNI
DTIM$A
DUPLX$

DY$SGS

E$xy series

EDAT$A
ENCD$A
ENCRYPT$
ENT$RD

EPF$ALLC

EPF$CPF

EPF$DEL

EPF$INIT

EPF$INVK
EPF$MAP

EPF$RUN

EQUAL$

ERKL$$

ERRPR$
ERRSET
ERTXT$
EX$CLR
EX$RD
EX$SET
EXIT
EXST$A
EXTR$A

Return data about a process's
environment.

Return data about file units.
Return disk time since login.
Control the way PRIMOS treats the user
terminal.

Return maximum number of dynamic
segments.

FORTRAN compiler exponentiation
routines.

Today's date, European (military) style.
Make a number printable if possible.
Encrypt login validation passwords.
Return the contents of a named entry
in a directory open on a file unit.

Perform the linkage allocation phase
for an EPF.

Return the state of the command
processing flags in an EPF.

Deactivate the most recent invocation
of a specified EPF.

Perform the linkage initialization
phase for an EPF.

Initiate the execution of a program EPF.
Map the procedure images of an EPF file

into virtual memory.
Combine functions of EPF$ALLC, EPF$MAP,
EPF$INIT, and EPF$INVK.
Generate a filename based on another
name.

Read or set the erase and kill
characters.

Print a standard error message.
Set ERRVEC (a system error vector).
Return text associated with error code.
Disable signalling of EXIT$ condition.
Return state of EXIT$ signalling.
Enable signalling of EXIT$ condition.
Return to PRIMOS.
Check for file existence.
Return an object's entryname and parent
directory pathname.

Ill 2-53

III
IV
III

III

I

IV
IV
III
II

II

II

II

II

II
II

II

II

III

III
III
III
III
III
III
III
IV
II

2-57
12-5
3-57

4-25

B-8

12-6
14-8
6-24
4-37

5-3

5-5

5-7

5-9

5-11
5-15

5-19

4-39

3-60

3-30
10-4
2-9
7-35
7-36
7-37
5-7
15-4
4-41

F$xxyy series FORTRAN compiler floating-point
functions.

FDAT$A Convert the DATMOD field returned by
RDEN$$ to DAY MON DD YYYY.

FEDT$A Convert the DATMOD field returned by
RDEN$$ to DAY DD MON YYYY.

FIL$DL Delete a file identified by a pathname.
FILL$A Fill a string with a character.

I

IV

IV

II
IV

B-8

14-10

14-12

4-43
10-6

SX-5 First Edition, Update

SUBROUTINES, VOLUME II

FINFO$

FNCHK$

FORCEW

FRE$RA

FSUB§A
FTIM$A

Return information about a specified
file unit.

Verify a supplied string as a valid
filename.

Force PRIMOS to write modified records
to disk.

De-allocate space for EPF function
return information.

Fill a substring with a given character
Convert the TIMMOD field returned by
REDN$$.

II

II

II

III

IV
IV

4-45

4-47

4-49

4-23

10-7
14-14

G$METR
GCHAR
GCHR$A
GEND$A
GETERR
GETID$

GINFO
GPAS$$

GPATH$

GSNAM$
GT$PAR
GV$GET
GV$SET

Return system metering information.
Get a character from an array.
Get a character from a packed string.
Position to end of file.
Return ERRVEC contents.
Obtain the user-id and the groups to
which it belongs.

Return PRIMOS II information.
Obtain the passwords of a subdirectory
of the current directory.

Return the pathname of a specified
unit, attach point, or segment.

Return current PRIMOS system name.
Parse character string into tokens.
Retrieve the value of a global variable
Set the value of a global variable.

Ill
III
IV
IV
III
II

III
II

2-63
6-25
10-9
15-5
10-6
2-21

2-10
2-23

II 4-51

III
III
II
II

2-12
6-27
6-12
6-14

H$xy series
HEAP

FORTRAN compiler complex number storage. I B-5
Heap sort. IV 17-51

I$AA01
I$AA12

I$AC03
I$AC0 9
I$AC15

I$AD07
I$AM05
I$AM10
I$AM11
I$AM13
I$AP02
I$BD07
I$BM05
I$BM10

Read ASCII from terminal.
Read ASCII from terminal or input stream
by REDN$$.

Input from parallel card reader.
Input from serial card reader.
Read and print card from parallel card

reader.
Read ASCII from disk.
Read ASCII from 9-track tape.
Read ASCII from 7-track tape.
Read BCD from 7-track tape.
Read EBCDIC from 9-track tape.
Read paper tape (ASCII).
Read binary from disk.
Read binary from 9-track.
Read binary from 7-track.

IV
IV

IV
IV
IV

IV
IV
IV
IV
IV
IV
IV
IV
IV

6-8
6-10

7-22
7-24
7-26

5-4
E-7
E-7
E-7
E-7
6-13
5-8
E-7
E-7

First Edition, Update 1 SX-6

INDEX BY NAME

ICE$
IDCHK$
IMADD
IMADJ
IMCOF
IMCON
IMDET
IMIDN
IMMLT
IMSCL
IMSUB
IMTRN
IN$LO

INSERT
IOA$
IOA$ER

IOA$RS
IOCS$F
IOCS$G
ISACL$

ISREM$

Initialize the command environment.
Validate a name.
Matrix addition (integer).
Calculate adjoint matrix (integer).
Calculate signed cofactor (integer).
Set matrix to constant matrix (integer)
Calculate matrix determinant (integer).
Set matrix to identity matrix (integer)
Matrix multiplication (integer).
Multiply matrix by scalar (integer).
Matrix subtraction (integer).
Calculate transpose matrix (integer).
Determine if a forced logout is in
progress.

Insertion sort.
Provide free-format output.
Provide free-format output, for error
messages.

Perform free-format output to a buffer.
Free logical unit.
Get logical unit.
Determine whether an object is ACL-
protected.

Determine whether an open file system
object is local or remote.

Ill
III
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
III

IV
III
III

III
IV
IV
II

5-8
2-27
18-9
18-11
18-13
18-16
18-18
18-20
18-24
18-26
18-28
18-30
2-28

17-52
3-32
3-38

6-32
3-4
3-2
2-25

II 4-54

#•*
JSTR$A Left-justify, right-justify, or center

a string.
IV 10-10

KLM$IF Enable a program to obtain serializa­
tion data from a specified file.

Ill 5-8a

L$xy series
LDISK$

LIMIT$
LINEQ

LIST$CMD

LOGO$$
LON$CN
LON$R
LOV$SW

LSTR$A
LSUB$A

FORTRAN compiler complex number loading.
Return information on the system's list
of logical disks.

Set and read various timers.
Solve a system of linear equations

(single precision).
Return a list of commands valid at
mini-command level.

Log out a user.
Switch logout notification on or off.
Read logout notification information.
Indicate if the Login-over-login
function is currently permitted.

Locate one string within another.
Locate one substring within another.

I
II

III
IV

II

III
III
III
III

IV
IV

B-5
4-56

8-36
18-7

6-16

2-29
5-20
5-21
2-13

10-12
10-14

SX-7 First Edition, Update 1

SUBROUTINES, VOLUME II

LUDEV$

LUDSK$
LV$GET

LV$SET

Return a list of devices that a user III 2-31
can access.

List the disks a given user is using. II 4-59
Retrieve the value of a CPL local II 6-18
variable.

Set the value of a CPL local variable. II 6-20

M$xy series

MADD
MADJ

MCHR$A

MCOF

MCON

MDET

MGSET$
MIDN

MINV

MKLB$F

MKON$F
MKON$P

MKONU$

MM$MLPA

MM$MLPU

MMLT

MOVEW$
MRG1$S
MRG2$
MRG3$S
MSCL
MSG$ST
MSTR$A
MSUB
MSUB$A
MTRN

FORTRAN compiler multiplication
routines.

Matrix addition (single precision).
Calculate adjoint matrix (single
precision).

Move a character from one packed string
to another.

Calculate signed cofactor (single
precision).

Set matrix to constant matrix (single
precision).

Calculate matrix determinant (single
precision) .

Set the receiving state for messages.
Set matrix to identity matrix (single
precision).

Calculate inverted matrix (single
precision).

Convert FORTRAN statement label to
PL/I format.

Create an on-unit (for FTN users).
Create an on-unit (for any language
except FTN).

Create an on-unit (for PMA and PL/I
users).

Make the last page of a segment
available.

Make the last page of a segment
unavailable.

Matrix multiplication (single
precision).

Move a block of memory.
Merge sorted files.
Return next merged record.
Close merged input files.
Matrix addition (single precision).
Return the receiving state of a user.
Move one string to another.
Matrix subtraction (single precision).
Move one substring to another.
Calculate transpose matrix (single
precision).

B-8

IV
IV

IV

IV

IV

IV

III
IV

IV

III

III
III

III

III

III

IV

III
IV
IV
IV
IV
III
IV
IV
IV
IV

18-9
18-11

10-16

18-13

18-16

18-18

9-5
18-20

18-22

7-20

7-21
7-23

7-25

4-4a

4-4b

18-24

6-34
17-33
17-37
17-38
18-26
9-3
10-18
18-28
10-20
18-30

First Edition, Update 1 SX-8

INDEX BY NAME

N$xy series
NAMEQ$
NLEN$A

FORTRAN compiler negation functions.
Compare two character strings.
Determine the operational length of a
string.

I
III
IV

B-5
6-35
10-22

O$AA01

O$AC03
0$AC15
O$AD07
O$AD08
0$ALxx

O$AL04
O$AL06
0$AL14
O$AM05
O$AM10
0$AM11
0$AM13
O$BD07
O$BM05
O$BM10
O$BP02
OPEN$A
OPNP$A
OPNV$A

OPSR$

OPSRS$

OPVP$A

OVERFL

Write ASCII to terminal or command
stream.

Parallel interface to card punch.
Parallel interface punch and print.
Write compressed ASCII to disk.
Write ASCII uncompressed to disk.
Interface to various printer
controllers.

Centronics line printer.
Parallel interface to MPC line printer,
Versatec printer/plotter interface.
Write ASCII to 9-track tape.
Write ASCII to 7-track tape.
Write BCD to 7-track tape.
Write EBCDIC to 9-track tape.
Write binary to disk.
Write binary to 9-track tape.
Write binary to 7-track tape.
Punch paper tape (binary).
Open supplied filename.
Read filename and open.
Open filename with verification and
delay.

Locate a file using a search list and
open the file.

Locate a file using a search list and
a list of suffixes.

Read filename and open, or verify and
delay.

Check if an overflow condition has
occurred.

IV 6-6

IV
IV
IV
IV
IV

IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV

II

II

IV

III

7-31
7-32
E-2
5-10
7-1

7-3
7-3
7-13
E-7
E-7
E-7
E-7
5-6
E-7
E-7
6-15
15-6
15-8
15-10

7-4

7-10

15-13

10-7

PUB

PUN

P10B

P10U

PA$DEL
PA$LST

PA$SET

Input character from paper tape reader
to Register A.

Input character from paper tape to
variable.

Output character from Register A to
paper-tape punch.

Output character from variable to
paper-tape punch.

Remove an object's priority access.
Obtain the contents of an object's
priority ACL.

Set priority access on an object.

IV

IV

IV

IV

II
II

6-17

6-19

6-18

6-20

2-27
2-28

II 2-30

SX-9 First Edition, Update 1

SUBROUTINES, VOLUME II

PAR$RV

PERM
PHANT$
PHNTM$
PL1$NL
POSN$A
PRERR
PRI$RV

PRJID$
PRWF$$

PTIME$

PWCHK$

4-61 Return a logical value indicating ACL II
and quota support.

Generate matrix permutations. IV 18-32
Start a phantom process. Ill 10-8
Start up a phantom process. Ill 5-23
Perform a nonlocal GOTO. Ill 7-27
Position file. IV 15-17
Print an error message. Ill 10-9
Return operating system revision III 2-15
number.

Return the user's project identifier. Ill 2-34
Read, write, position, or truncate a II 4-63
file.

Return amount of CPU time used since III 2-35
login.

Validate syntax of a password. Ill 2-3 6

Q$READ

Q$SET

QUICK
QUIT$

Return directory quota and disk record
usage information.

Set a quota on a subdirectory of the
current directory.

Partition exchange sort.
Determine if there are pending quits.

II

II

IV
III

4-70

4-73

17-54
3-62

RADXEX
RAND$A

RD$CE_DP

RDASC
RDBIN
RDEN$$
RDLIN$

RDTK$$
READY$
REMEPF$

REST$$
RESU$$

RLSE$S
RMSGD$-
RNAM$A

RNDI$A
RNUM$A

RPL$

Radix exchange sort.
Generate random number and update seed,
using 32-bit word size and the linear
congruential method.

Return caller's current command
environment depth.

Read ASCII from any device.
Read binary from any device.
Position in or read from a directory.
Read a line of characters from a
compressed ASCII disk file.

Parse a command line.
Display PRIMOS command prompt.
Remove an EPF from a user's address
space.

Restore an R-mode executable image.
Restore and resume an R-mode
executable image.

Get input records after SETU$.
Receive a deferred message.
Prompt, read a pathname, and check
format.

Initialize random number generator seed.
Prompt and read a number (in any

format).
Replace one EPF runfile with another.

IV
IV

II

17-55
13-2

6-22

IV
IV
II
II

III
III
II

III
III

IV
III
IV

IV
IV

4-5
4-9
A-9
4-76

3-16
2-37
5-22

5-13
5-15

17-26
9-7
11-2

13-4
11-4

II 5-24

First Edition, Update 1 SX-10

INDEX BY NAME

RPOS$A
RRECL
RSEGAC$
RSTR$A
RSUB$A
RTRN$S
RVON$F
RVONU$

RWND$A

Return position of file.
Read disk record-
Determine access to a segment.
Rotate string left or right.
Rotate substring left or right.
Get sorted records.
Revert an on-unit (for FTN users).
Revert an on-unit (for any lanuage

except FTN).
Reposition file.

IV
IV
III
IV
IV
IV
III
III

IV

15-18
5-14
2-16
10-23
10-26
17-28
7-28
7-29

15-19

S$xy series
SATR$$
SAVE$$
SCHAR

SEM$CL
SEM$DR
SEM$NF
SEM$OP
SEM$OU
SEM$TN
SEM$TS

SEM$TW

SEM$WT
SETRC$
SETU$S

SGD$DL
SGD$EX

SGD$OP
SGDR$$

SGNL$F
SHELL
SID$GT

SIGNL$
SIZE$
SLEEP$

SLEP$I
SLITE
SLITET
SMSG$
SNCHK$

SP$REQ

FORTRAN compiler subtraction routines.
Set or modify an object's attributes.
Save an R-mode executable image.
Store a character into an array

location.
Release (close) a named semaphore.
Drain a semaphore.
Notify a semaphore.
Open a set of named semaphores.
Open a set of named semaphores.
Periodically notify a semaphore.
Return number of processes waiting on

a semaphore.
Wait on a specified named semaphore,

with timeout.
Wait on a semaphore.
Record command error status.
Prepare sort table and buffers for

CMBN$.
Delete a segment directory.
Find out if there is a valid entry at

the current position within the segment
directory on a specified unit.

Open a segment directory entry.
Position, read, or modify a segment

directory.
Signal a condition.
Diminishing increment sort.
Return user number of initiating

process.
Signal a condition.
Return the size of a file system entry.
Suspend a process for a specified

interval.
Suspend a process (interruptible).
Set the sense light on or off.
Test sense light settings.
Send an .interuser message.
Check validity of system name passed

to it.
Insert a file into the spool queue.

I
II
III
III

III
III
III
III
III
III
III

B-8
4-78
5-17
6-37

8-17
8-19
8-21
8-23
8-23
8-27
8-29

III 8-31

III
III
IV

II
II

II
II

III
IV
III

III
II
III

III
III
III
III
III

8-33
5-9
17-22

4-84
4-86

4-88
4-90

7-30
17-56
2-38

7-32
4-96
8-39

8-40
10-12
10-13
9-9 .
2-18

IV 7-12C

SX-11 First Edition, Update 1

SUBROUTINES, VOLUME II

SPAS$$ Set the owner and nonowner passwords on
an object.

SPOOL$ Insert a file in spooler queue.
SR$ABSDS Disable optional rules enabled by

SR$ENABL.
SR$ADDB Add a rule to the start of a search

list or before a specified rule within
the list.

SR$ADDE Add a rule to the end of a search
list or after a specified rule within
the list.

SR$CREAT Create a search list.
SR$DEL Delete a search list.
SR$DSABL Disable an optional search rule enabled

by SR$ENABL.
SR$ENABL Enable an optional search rule.
SR$EXSTR Determine if a search rule exists.
SR$FR_LS Free list structure space allocated by

SR$LIST or SR$READ.
SR$INIT Initialize all search lists to system

defaults.
SR$LIST Return the names of all defined search

lists.
SR$NEXTR Read the next rule from a search list.
SR$READ Read all of the rules in a search list.
SR$REM Remove a rule from a search list.
SR$SETL Set the locator pointer for a search

rule.
SR$SSR Set a search list via a user-defined

search rules file.
SRCH$$ Open, close, delete, or verify

existence of an object.
SRSFX$ Search for a file with a list of

possible suffixes.
SRTF$S Sort several input files.
SS$ERR Signal an error in a subsystem.
SSTR$A Shift string left or right.
SSUB$A Shift substring left or right.
SSWTCH Test sense switch settings.
ST$SGS Return maximum number of static

segments.
STR$AL Allocate user-class dynamic memory.
STR$AP Allocate process-class dynamic memory.
STR$AS Allocate subsystem-class dynamic

memory.
STR$AU Allocate user-class dynamic memory.
STR$FP Free process-class dynamic memory.
STR$FR Free user-class dynamic memory.
STR$FS Free subsystem-class dynamic memory.
STR$FU Free user-class dynamic memory.
SUBSRT Sort file on ASCII key. (V-mode)
SUBSRT Sort file on ASCII key. {R-mode)
SUSR$ Test if current user is supervisor.

II

IV
II

II

II

II

2-32

7-8
7-17

7-20

7-23

II
II
II

II
II
II

II

II

II
II
II
II

7-2 6
7-28
7-30

7-33
7-36
7-40

7-42

7-44

7-48
7-53
7-57
7-60

7-63

II

II

IV
III
IV
IV
III
III

III
III
III

III
III
III
III
III
IV
IV
III

4-99

4-108

17-16
5-11
10-28
10-30
10-14
4-26

4-5
4-7
4-8

4-10
4-11
4-12
4-13
4-14
17-10
17-40
2-39

First Edition, Update 1 SX-12

INDEX BY NAME

T$AMLC
T$CMPC
T$LMPC
T$MT
T$PMPC
T$SLC0
T$VG
TUB

TUN
T10B
T10U
TEMP$A
TEXTO$
TI$MSG

TIDEC
TIHEX
TIMDAT

TIME$A
TIOCT
TL$SGS
TNCHK$

TNOU

TNOUA
TODEC
TOHEX
TONL
TOOCT
TOVFD$
TREE$A
TRNC$A
TSCN$A
TSRC$$

TTY$IN

TTY$RS

TYPE$A

Communicate with AMLC driver. IV 8-23
Input from MPC card reader. IV 7-2 8
Move data to LPC line printer. IV 7-6
Raw data mover for tape. IV 7-37
Raw data mover for card reader. IV 7-34
Communicate with SMLC driver. IV 8-3
Interface to Versatec printer. IV 7-16
Read a character (function) from III 3-23
PMA into Register A.

Read a character (procedure). Ill 3-24
Write one character from Register A. Ill 3-47
Write one character. Ill 3-48
Open a scratch file. IV 15-20
Check filename for valid format. Ill 10-15
Display standard message showing times III 2-40
used.

Read a decimal number.
Read a hexadecimal number.
Return timing information and user
identification.

Return time of day.
Read an octal number.
Return highest segment number.
Verify a supplied string as a valid
pathname.

Write characters to terminal,
by NEWLINE.

Write characters to terminal. Ill 3-41
Write a signed decimal number. Ill 3-42
Write a hexadecimal number. Ill 3-43
Write a NEWLINE. Ill 3-44
Write an octal number. Ill 3-45
Write a decimal number, without spaces. Ill 3-46
Test for pathname. IV 10-32
Truncate a file. IV 15-22
Scan the file system tree structure. IV 15-23
Open, close, delete, or find a file II A-17
anywhere in the file structure.

Check for unread terminal input III 3-63
characters.

Clear the terminal input and output III 3-65
buffers.

Determine string type. IV 10-35

III 3-2 6
III 3-27
III 2-42

IV 12-7
III 3-28
III 4-27
II 4-114

followed III 3-40

UID$BT
UID$CH

UNIT$A
UNITS$

UNO$GT

Return unique bit string.
Convert UID$BT output into character
string.

Check for file open.
Return caller's minimum and maximum
file unit numbers.

List users with same name as caller.

Ill
III

IV
II

III

6-39
6-40

15-28
4-117

2-44

SX-13 First Edition, Update 1

SUBROUTINES, VOLUME II

UPDATE

USER$
UTYPE$

Update current directory (PRIMOS II III 10-17
only.

Return user number and count of users. Ill 2-20
Return user type of current process. Ill 2-45

VALID$ Validate a name against composite
identification.

Ill 2-48

WILD$

WRASC
WRBIN
WRECL
WTLIN$

Return a logical value indicating
whether a wildcard name was matched,

Write ASCII.
Write binary to any output device.
Write disk record.
Write a line of characters to a
compressed ASCII file.

II 4-118

IV
IV
IV
I I

4 - 3
4-7
5-17
4-120

YSNO$A Ask question and obtain a yes or no
answer.

IV 11-7

Z$80 Clear double-precision exponent. B-5

First Edition, Update 1 SX-14

Index

Access, 2-19
calculating accessibility,
2-17

category, 2-3, 2-15, 2-16
changing, 2-5, 4-99, 4-102
copying, of another object,
2-9

default, 2-7
listing, 2-11
modifying, 2-5
nonowner, 2-18, 2-23, 2-32
owner, 2-18, 2-23, 2-32
priority, 2-27 to 2-30
specific, 2-15

Access Category, searching for,
7-4, 7-11

Access control, 2-1 to 2-33
ACL structure, 2-12
converting ACL to password,
2-13

group-id, 2-12, 2-21
user-id, 2-12, 2-21

ACL protection and quotas,
supporting, 4-61

Adding search rule,
after existing rule, 7-24
before existing rule, 7-21
to beginning of search list,
7-21

to end of search list, 7-24

Addressing modes and libraries,
1-14

Administrator search rules,
7-21, 7-58

Arguments,
how to set bits in, 1-11
keys as, 1-12
parsing command, 6-5, C-l to
C-13

Attach point, setting (See
Attaching)

Attaching, 3-1 to 3-17, A-2
relative to current directory,
3-15

to any directory, 3-3
to home directory, 3-10
to login directory, 3-13
to origin directory, 3-13
to top-level directory, 3-6,
3-8, 3-11

X-l First Edition, Update 1

SUBROUTINES, VOLUME II

Attribute,
date and time, 4-81
dumped, 4-81
password protection, 4-7 9
read/write lock, 4-81
setting directory, 4-15, A-5,
A-7

setting file, 4-78

Creating,
directory, 4-15, A-5, A-7
file system object, 4-99,
4-105, A-17

file using search rules, 7-4,
7-11

search list, 7-27, 7-64

B

BIN data types, 1-7

BIT data types, 1-7

Bits,
how to set in arguments, 1-11
positional values of, 1-11,
1-12

CALL statement, 1-4, 1-5

Change open mode, 4-6

CHAR data types, 1-7

Closing file system objects, 4-7
to 4-10, 4-99, 4-102, 4-105,
A-17

Command arguments, parsing, 6-5,
C-l to C-13

Command environment, 6-1 to 6-22
current depth of, 6-22
maximum breadth of, 6-3
maximum depth of, 6-4

Command invocation from a running
program, 6-9

Command state flags, EPF, 5-5

Data types,
equivalents table, B-2
FIXED BIN, 1-7
FLOAT BIN, 1-7
parameter, 1-7
returned value, 1-7

Deactivating an EPF, 5-7

Declaration, 1-4, 1-5
arrays in, 1-8
DECLARE (DCL) statement, 1-4,
1-5

function, 1-5
structures in, 1-9
subroutine, 1-4

Deleting,
file system objects, 4-43,
4-99, 4-105, A-17

multiple search rules, 7-64
search list, 7-29
search rule, 7-58
segment directory entry, 4-84

Directory,
attaching to, (See also
Attaching)

creating, 4-15, A-5, A-7
deleting, 4-43
listing, 4-17
quota, 4-70, 4-73
reading entries in, 4-2 4
searching for, 7-4, 7-11
searching through, 4-17, 4-24,
4-29, 4-37, A-9

segment, 4-90
selecting entries in, 4-29,
4-37

Disabling optional search rule,
7-18, 7-31

First Edition, Update 1 X-2

INDEX

Enabling optional search rule,
7-34

EPF,
command state flags, 5-5
deactivating, 5-7
initializing, 5-9, 5-19
invoking, 5-11, 5-19
linkage allocation, 5-3, 5-19
managing, 5-1 to 5-25
mapping, 5-15, 5-19
removing, 5-22
replacing, 5-24

Error code, standard, 1-13

Existence of an object,
verifying, 4-99, 4-103, A-17

File system object (continued)
locating, 4-54
opening, 4-99, 4-101, 4-105
size of, 4-96
verifying existence of, 4-99,
4-103

File unit,
assignment, 7-4, 7-11
closing file by, 4-10
number, minimum and maximum,
4-114

obtaining information about,
4-45

obtaining pathname from, 4-51

FIXED BIN data types, 1-7

FLOAT BIN data types, 1-7

Forced writing of files, 4-49,
4-65

File,
creating with search rules,
7-4, 7-11

deleting, 4-43
forced writing of, 4-49, 4-65
locating, 4-54
opening with search rules,
7-4, 7-11

opening with search rules and
suffix list, 7-11

positioning, 4-63
reading, 4-63, 4-7 6
searching for, 7-4, 7-11
truncating, 4-63
writing, 4-49, 4-63, 4-120

File attributes, setting, 4-78

File name,
extracting from pathname, 4-41
generating, 4-39
verifying string as, 4-47

File system object,
changing, 4-11
changing access to, 4-102
closing, 4-99, 4-102, 4-105
creating, 4-99, 4-105
deleting, 4-43, 4-99, 4-105

Free allocated space, 7-41

Function,
call, 1-5
declaration, 1-5
defined, 1-1
distinguished from subroutine,

1-1
without parameters, 1-5

Generation, file name, 4-3 9

Global variable,
retrieving value of, 6-12
setting value of, 6-14

H

Home_dir (See Search rule
keywords)

X-3 First Edition, Update 1

SUBROUTINES, VOLUME II

Initializing,
EPF, 5-9, 5-19
search lists, 7-43

Invoking,
command from a running program,

6-9
EPF, 5-11, 5-19

Keys as arguments, 1-12

Libraries,
and addressing modes, 1-14
subroutine, 1-14

Linkage allocation, EPF, 5-3,
5-19

Listing,
commands at mini-command level,

6-16
directory entries, 4-17

Local objects, 4-54

Local variable,
retrieving value of, 6-18
setting value of, 6-20

Locating objects, 4-54

Logical disks,
in use by caller, 4-59
system's list of, 4-56

M

Mapping an EPF, 5-15, 5-19

Mini-command level, listing
commands at, 6-16

Modes and libraries, 1-14

Object name, changing, 4-11

Open mode, changing, 4-6

Opening,
file system object, 4-99,
4-101, 4-105, A-17

file using search rules, 7-4,
7-11

file using search rules and
suffix list, 7-11

segment directory entry, 4-88

Optional search rule,
checking existence of, 7-37
disabling, 7-18, 7-31
enabling, 7-34
reading disabled, 7-54
skipping disabled, 7-49
status of, 7-54

Origin_dir (See Search rule
keywords)

Parameter, 1-6 to 1-10
data types, 1-7
optional, 1-9

Parsing command arguments, 6-5,
C-l to C-13

Pathname,
obtaining, from file unit,
4-51

verification of string as,
4-114

POINTER data types, 1-8

Positioning,
file, 4-63
segment directory, 4-90

First Edition, Update 1 X-4

INDEX

Q

Quota, directory, 4-70, 4-73

Quotas and ACL protection,
supporting, 4-61

Reading,
directory entries, 4-24
files, 4-63, 4-76
search rule, 7-54
segment directory entries,
4-90

Referencing_dir (See Search rule
keywords)

(See Locating Remote objects
objects)

Removing,
EPF, 5-22
search rule, 7-58

Replacing an EPF, 5-24

Returned value,
data types, 1-7
optional, 1-10
RETURNS descriptor, 1-5

Satisfying references,
at load time, 1-14
at run time, 1-15

Search list,
appending to, 7-64
'blank', 7-27
checking for search rule, 7-37
creating, 7-27
deleting, 7-29
deleting multiple, 7-43
displaying names of, 7-45
initializing all, 7-43
reading all rules in, 7-54
reading next rule in, 7-49

Search list (continued)
search rules file name, 7-45
setting, 7-64
template file name, 7-45

Search rule keywords,
checking existence of, 7-37
current values of, 7-49
home_dir, 7-24, 7-37, 7-38,
7-50

-insert, 7-65
origin_dir, 7-22, 7-24, 7-25,
7-37, 7-38, 7-50

referencing_dir, 7-4, 7-11,
7-24, 7-37, 7-38, 7-49 to
7-51

-system, 7-65

Search rule locator,
reading, 7-49
setting, 7-61

Search rule subroutines, 7-1
(See also Search rule keywords;
Search rule locator; Search
rules; Search rules file)

case sensitivity, 7-3, 7-37
data types, 7-3
list of, 7-2
wildcards, 7-3

Search rules, (See also Search
rules file)

adding multiple, 7-64
adding to search list, 7-21,
7-24

checking existence of, 7-37
deleting from list, 7-58
deleting multiple, 7-64
determining type, 7-49
disabling optional, 7-18, 7-31
enabling optional, 7-34
reading disabled, 7-54
reading from list, 7-49
reading multiple, 7-54
system defaults, 7-43

Search rules file,
displaying names of,
using, 7-64

SEARCH_RULES*, 7-43

7-45

X-5 First Edition, Update 1

SUBROUTINES, VOLUME II

Searching,
for directory, 7-4, 7-11
for file system object, 4-99,
A-17

for suffixed pathname, 4-108
through directory, 4-17, 4-24,
4-29, 4-37, A-9

Template file, 7-45, 7-64

Truncating,
file, 4-63
segment directory, 4-90

Segment directory,
creating with search rules,
7-4, 7-11

deleting entry, 4-84
determining validity of entry,
4-86

expanding, 4-90
opening entry, 4-88
positioning in, 4-90
reading entry in, 4-90
searching for, 7-4, 7-11
truncating, 4-90

Selecting directory entries,
4-29, 4-37

Setting,
bits in arguments,
search list, 7-64

1-11

Setting attach point {See
Attaching)

Standard error code, 1-13

U

Usage section,
data types in, 1-6
explained, 1-2

V

Verifying,
existence of object, 4-99,
4-103, 4-108, A-17 .

string as filename, 4-47
string as pathname, 4-114

W

Wildcard, matching name with,
4-118

Subroutine,
call, 1-4
contents of, 1-2
declaration, 1-4
defined, 1-1
distinguished from function,
1-1

example of, figure, 1-3
libraries, 1-14
loading and linking
information, 1-14

overview, 1-1 to 1-15
parameter section, 1-6
parameters, 1-6
usage section, 1-2

Suffix,
appending to pathname, 4-4
searching for file with, 4-108
using list for searching, 7-11

Writing files, 4-49, 4-63, 4-120

First Edition, Update 1 X-6

SURVEY

READER RESPONSE FORM

DOC10081-1LA Subroutines Reference Guide Volume II

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas s

Readability: hard to understand average very clear

Technical levels too simple about right too technical

Technical accuracy: poor average very good

Examples: too many about right too few

Illustrations: too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Name: Position:

Company:

Address:

_Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime.
Attention: Technical Publications
BldglO
Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOC10081-1LA Subroutines Reference Guide Volume II

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good _ f a i r poor

2. Please rate the document in the following areas:

Readability: hard to understand _average very clear

Technical level: too simple about right too technical

Technical accuracy: poor _average very good

Examples: too many about right .too few

Illustrations: too many ____about right .too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Name: Position:

Company:

Address:

.Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime.
Attention: Technical Publications
BldglO
Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOC10081-1LA Subroutines Reference Guide Volume II

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good _^fair poor

2. Please rate the document in the following areas:

Readability: hard to understand _average very clear

Technical level: too simple _ a b o u t right too technical

Technical accuracy: poor average very good

Examples: too many about right too few

Illustrations: .too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Name: Position:

Company:

Address:

_Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit »531 Natick. Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prune.
Attention: Technical Publications
BldglO
Prime Park, Natick, Ma. 01760

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Contents
	v
	vi
	About This Book
	vii
	viii
	ix
	x
	Chapter 1
	Overview of Subroutines
	1-1
	1-2
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	Chapter 2
	Access Control
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	Chapter 3
	Attaching
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	Chapter 4
	File and Directory Manipulation
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	4-75
	4-76
	4-77
	4-78
	4-79
	4-80
	4-81
	4-82
	4-83
	4-84
	4-85
	4-86
	4-87
	4-88
	4-89
	4-90
	4-91
	4-92
	4-93
	4-94
	4-95
	4-96
	4-97
	4-98
	4-99
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	4-109
	4-110
	4-111
	4-112
	4-113
	4-114
	4-115
	4-116
	4-117
	4-118
	4-119
	4-120
	4-121
	Chapter 5
	EPF Management
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	Chapter 6
	Command Environment
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	Chapter 7
	Search Rule Subroutines
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	Appendixes
	Appendix A
	Obsolete File System Subroutines
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	Appendix B
	Data Type Equivalents
	B-1
	B-2
	B-3
	Appendix C
	Argument Parsing By the CL$PIX Subroutine
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	C-11
	C-12
	C-13
	Indexes
	Index of Subroutines
	SX-1
	SX-2
	SX-3
	SX-4
	SX-5
	SX-6
	SX-7
	SX-8
	SX-9
	SX-10
	SX-11
	SX-12
	SX-13
	SX-14
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	Survey
	
	
	
	
	
	

